{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Importing data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
sepal-lengthsepal-widthpetal-lengthpetal-widthclass
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa
55.43.91.70.4Iris-setosa
64.63.41.40.3Iris-setosa
75.03.41.50.2Iris-setosa
84.42.91.40.2Iris-setosa
94.93.11.50.1Iris-setosa
\n", "
" ], "text/plain": [ " sepal-length sepal-width petal-length petal-width class\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "1 4.9 3.0 1.4 0.2 Iris-setosa\n", "2 4.7 3.2 1.3 0.2 Iris-setosa\n", "3 4.6 3.1 1.5 0.2 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa\n", "5 5.4 3.9 1.7 0.4 Iris-setosa\n", "6 4.6 3.4 1.4 0.3 Iris-setosa\n", "7 5.0 3.4 1.5 0.2 Iris-setosa\n", "8 4.4 2.9 1.4 0.2 Iris-setosa\n", "9 4.9 3.1 1.5 0.1 Iris-setosa" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pandas import read_csv\n", "url = \"https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv\"\n", "names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']\n", "dataset = read_csv(url, names=names)\n", "dataset.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**This is the part of code you have to solve and deliver as a part of your report.**\n", "\n", "# Statistical Summary\n", "For this section you can create your own functions or also you can writte down the code as chunks to compute:\n", "- Mean\n", "- Number of elements per properti\n", "- Standard deviation " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plots and data visualization\n", "Make the next plots for data exploration and visulization:\n", "- Box and Whiskers plot\n", "- histogram plot\n", "- scatter plot for sepal length and width\n", "- scatter plot for petal length and width" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }