From 917bf25c20bb6179ee3ab7ac9ec5fa8f5018d6b9 Mon Sep 17 00:00:00 2001 From: gmarx Date: Tue, 24 Mar 2020 23:01:10 -0600 Subject: [PATCH] initial commit --- covid-model.ipynb | 955 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 955 insertions(+) create mode 100644 covid-model.ipynb diff --git a/covid-model.ipynb b/covid-model.ipynb new file mode 100644 index 0000000..5a3279f --- /dev/null +++ b/covid-model.ipynb @@ -0,0 +1,955 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateRepDayMonthYearCasesDeathsCountries and territoriesGeoId
024/03/2020243202061AfghanistanAF
123/03/20202332020100AfghanistanAF
222/03/2020223202000AfghanistanAF
321/03/2020213202020AfghanistanAF
420/03/2020203202000AfghanistanAF
...........................
654619/03/2020193202020ZambiaZM
654724/03/2020243202001ZimbabweZW
654823/03/2020233202000ZimbabweZW
654922/03/2020223202010ZimbabweZW
655021/03/2020213202010ZimbabweZW
\n", + "

6551 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " DateRep Day Month Year Cases Deaths Countries and territories \\\n", + "0 24/03/2020 24 3 2020 6 1 Afghanistan \n", + "1 23/03/2020 23 3 2020 10 0 Afghanistan \n", + "2 22/03/2020 22 3 2020 0 0 Afghanistan \n", + "3 21/03/2020 21 3 2020 2 0 Afghanistan \n", + "4 20/03/2020 20 3 2020 0 0 Afghanistan \n", + "... ... ... ... ... ... ... ... \n", + "6546 19/03/2020 19 3 2020 2 0 Zambia \n", + "6547 24/03/2020 24 3 2020 0 1 Zimbabwe \n", + "6548 23/03/2020 23 3 2020 0 0 Zimbabwe \n", + "6549 22/03/2020 22 3 2020 1 0 Zimbabwe \n", + "6550 21/03/2020 21 3 2020 1 0 Zimbabwe \n", + "\n", + " GeoId \n", + "0 AF \n", + "1 AF \n", + "2 AF \n", + "3 AF \n", + "4 AF \n", + "... ... \n", + "6546 ZM \n", + "6547 ZW \n", + "6548 ZW \n", + "6549 ZW \n", + "6550 ZW \n", + "\n", + "[6551 rows x 8 columns]" + ] + }, + "execution_count": 150, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Reading data\n", + "import pandas as pd\n", + "covid_data = pd.read_csv('https://worldhealthorg-my.sharepoint.com/personal/garnicacarrenoj_who_int/_layouts/15/Doc.aspx?sourcedoc=%7B87BD9C0A-2E91-4BE3-8308-B0B545B6DFB6%7D&file=CSV%20as%20at%2024%20March%202020-Daily%20additions.csv&action=default&mobileredirect=true&CT=1585104198257&OR=ItemsView')\n", + "covid_data" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split \n", + "train_set, test_set=train_test_split(covid_data,test_size=0.2,random_state=42)\n", + "train_cp=train_set.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[,\n", + " ],\n", + " [,\n", + " ],\n", + " [,\n", + " ]],\n", + " dtype=object)" + ] + }, + "execution_count": 152, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEVCAYAAAAM3jVmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dfZhcZX3/8fenCAHDs9EVA5JYgzZKjRABL1BjUQhgDfRnbayFgPiLVtBasTVIL/UHpY0PaH1AJEoqKBrSKiWFCATMVr2UhwQjIUZkgaWwhgQIBAIqBr6/P+57wmGZ2Z3ZnZ2HPZ/Xdc21Z+5zzsz3nLnnu2fuc5/7KCIwM7Ny+KN2B2BmZq3jpG9mViJO+mZmJeKkb2ZWIk76ZmYl4qRvZlYiTvpmZiXipN8BJP21pFWStkraIOkHko5od1xmrSSpX9JvJT0m6RFJP5X0fknOU03kndlmkj4C/BvwL0AP8FLgq8CcdsZl1iZ/HhG7AfsDC4GPARe1N6TxxUm/jSTtAZwNnBYR34+IxyPiDxHx3xHxD5IOkfSzfNSzQdJXJO2U15WkL0jaJOlRSWslvTrPmyDpc5L+V9JGSV+TtEueN0nSlfk1N0v6sY+krNNExJaIWAb8FTBP0qslHSfp57m+3yvpU5XlJV0l6YPF15B0q6QTWhx6x/OXvb1eD+wMXF5j/lPA3wOT8rJHAh/I844C3ggcAOwBvBN4KM9bmMtnAC8HJgOfyPPOAO4DXkj6ZfFxwGNxWEeKiJtI9fUNwOPAScCewHHA30o6Pi96MfA3lfUkvYZU769qacBdwEm/vV4APBgR26rNjIjVEXFDRGyLiH7gQuBNefYfgN2AVwKKiPURsUGSgPnA30fE5oh4jNR0NLew3j7A/vlXxY/DAzBZZ/sNsHdE9EbE2oh4OiJuBb7LM9+HZcABkqbl5ycCl0XEk22It6M56bfXQ8AkSc+rNlPSAbkp5n5Jj5KS9ySAiPgh8BXgfGCTpEWSdicdwT8fWJ2bcB4Brs7lAJ8F+oBrJd0lacFYbqBZE0wGNks6VNJKSQ9I2gK8n2e+D78DLgP+JjdXvgv4Vtsi7mBO+u31M+D3wPE15l8A/AqYFhG7k5piVJkZEV+KiIOB6aTmnH8AHgR+C7wqIvbMjz0iYte8zmMRcUZEvAx4O/ARSUeO0faZjYqk15GS/k+A75CO6PeLiD2Ar1H4PpCaeN5NagZ9IiJ+1uJwu4KTfhtFxBZSW/v5ko6X9HxJO0o6RtJnSM03jwJbJb0S+NvKupJel498diS1df4OeDoinga+DnxB0ovyspMlHZ2n3ybp5bkZaAvpvMHTrdtqs+FJ2l3S24AlwLcjYi3p+7A5In4n6RDgr4vr5CT/NHAePsqvyUm/zSLiPOAjwD8BDwD3AqcD/wV8lFSxHyMl8ssKq+6eyx4G7iE1FX02z/sYqQnnhtwsdB3wijxvWn6+lfRL46sRsXKMNs+sUf8t6THS9+As4PPAKXneB4Cz8/xPAEurrH8JcCDw7RbE2pXkc3hmNl5IOgmYHxG+uLEGH+mb2bgg6fmkXwOL2h1LJ3PSN7Oul89ZPQBsJJ3wtRrcvGNmViI+0jczK5GqFwV1ikmTJsWUKVOqznv88ceZOHFiawMahW6Kt5tiheHjXb169YMR8cKaC3SYSr0fb59DpxnP8Q5Z5yOiYx8HH3xw1LJy5cqa8zpRN8XbTbFGDB8vsCo6oD7X+6jU+/H2OXSa8RzvUHXezTtmZiXS0c07Q1k7sIWTFzQ2gF7/wuPGKBozG4+mNJhjoPPzjI/0zcxKxEnfzKxEnPTNzEqka9v0zcwaMbh9/owDtzV8XnA88JG+mVmJOOmbmZWIk76ZWYm4Td/MuspI+s7bM3ykb2ZWInUlfUn9ktZKWiNpVS7bW9IKSXfkv3vlckn6kqQ+SbdKOqjwOvPy8ndImjc2m2RmZrU0cqT/5oiYEREz8/MFwPURMQ24Pj8HOIZ0H9ZpwHzgAkj/JIBPAocChwCfrPyjMDOz1hhN884c4OI8fTFwfKH8kjzY2w3AnpL2AY4GVkTE5oh4GFgBzB7F+5uZWYPqPZEbwLWSArgwIhYBPRGxIc+/H+jJ05NJd7KvuC+X1Sp/FknzSb8Q6Onpobe3t2pAPbukiysaUeu1WmHr1q1tff9GdFOs0H3xmrVTvUn/iIgYkPQiYIWkXxVnRkTkfwijlv+hLAKYOXNmzJo1q+pyX770Cs5b21jno/53V3+tVujt7aXWtnSabooVui9es3aqK2tGxED+u0nS5aQ2+Y2S9omIDbn5ZlNefADYr7D6vrlsAJg1qLx3VNGbWVdz98vWG7ZNX9JESbtVpoGjgNuAZUClB8484Io8vQw4KffiOQzYkpuBrgGOkrRXPoF7VC4zM7MWqedIvwe4XFJl+e9ExNWSbgaWSjoVuAd4Z15+OXAs0Ac8AZwCEBGbJZ0D3JyXOzsiNjdtS8zMbFjDJv2IuAt4TZXyh4Ajq5QHcFqN11oMLG48TDMzawYPw2BmTTGSW5ha63kYBjOzEnHSNzMrETfvmNlzjKQr5RkHjkEg1nRO+mZdYqR92vsXHtfkSKybOembNUhSP/AY8BSwLSJm5gEFLwOmAP3AOyPiYaW+zl8kdWN+Ajg5Im5pZby+AMqK3KZvNjKjGnXWrF2c9M2ao9FRZ83aws07Zo1rxqizGwplVUeXHTx6aKOjyrbaSEa+baexinesRnxt1miyTvpmjWv6qLPVRpcdPHpop1/4dMaB2xoe+badxiresRrNt1mjyXbPJ2TWIZo06qzZdvWcbD/jwG3P+cc/kp5ZbtM3a0ATR501awsf6Zs1pimjzpq1y7BJX9J+wCWkyh7Aooj4oqRPAf8XeCAv+vGIWJ7XORM4ldSP+UMRcU0un03qs7wD8I2IWNjczTEbW80cddasHeo50t8GnBERt+SftaslrcjzvhARnysuLGk6MBd4FfAS4DpJB+TZ5wNvJfVguFnSsoj4ZTM2xMysE3T6xXD1jKe/gdy9LCIek7SeKjc0L5gDLImI3wN3S+ojnegC6MtHSkhakpd10jcza5GGTuRKmgK8FrgxF50u6VZJi/MtEKF2v+Ra5WZm1iJ1n8iVtCvwPeDDEfGopAuAc0jt/OcA5wHvGW1A1S5SqWYkF1aM1UUT9WjWhRWt0E2xQvfFa9ZOdSV9STuSEv6lEfF9gIjYWJj/deDK/HSofsnD9leudpFKNV++9IqGL6wYq4sm6tGsCytaoZtihe6L16ydhm3eyaMEXgSsj4jPF8qL44ecQOqrDKlf8lxJEyRNJQ00dRPphujTJE2VtBPpZO+y5myGmZnVo55D5cOBE4G1ktbkso8D75I0g9S80w+8DyAi1klaSjpBuw04LSKeApB0OnANqcvm4ohY18RtMTOzYdTTe+cngKrMWj7EOucC51YpXz7UemZmNrY8DIOZWYk46ZuZlYiTvplZiTjpm5mViJO+mVmJOOmbmZWIk76ZWYk46ZuZlYiTvplZiTjpm5mViJO+mVmJOOmbmZWIk76ZWYk46ZuZlUjLk76k2ZJul9QnaUGr39+s1VznrZO0NOlL2gE4HzgGmE66Ecv0VsZg1kqu89ZpGrvJ7OgdAvRFxF0AkpYAc0h32RpzUxZcNaL1+hce1+RIrETaWufNBmt10p8M3Ft4fh9waHEBSfOB+fnpVkm313itScCDTY+wCn26KS/TsniboJtiheHj3b9VgVQxbJ2HmvW+qz6HDzneMVUt3iFyU8063+qkP6yIWAQsGm45SasiYmYLQmqKboq3m2KF7ou3mmr1vtu2y/GOrWbF2+oTuQPAfoXn++Yys/HKdd46SquT/s3ANElTJe0EzAWWtTiGUpEUkl7e7jhKzHW+zfwdeLaWJv2I2AacDlwDrAeWRsS6Eb7csE1AHWYRgKR+Sb+V9JikRyT9VNL7JY36s5DUK+m9ow+1O/dtJxplne/Y7aqhnmbZfklPSpo0qPznOTlPGU0ADX4Hxt3+rYciohmvY3WS1A+8NyKuk7QH8Cbgi0BvRJwyytfuBb4dEd8olAUwLSL6RvPaZs2Q6//vga9ExJdz2YHAfwIHAFMjon8Ur9+LvwND8hW5bRQRWyJiGfBXwDxJr5Y0QdLnJP2vpI2SviZpFwBJe0m6UtIDkh7O0/vmeecCbwC+ImmrpK8U3uotku7IvyzOl6S8zssl/Y+kLZIelHRZi3eBldO3gJMKz+cBl1SeSNpD0iW5nt8j6Z8qv4QlnSzpJ/k78rCkuyUdk+c1/B0oIyf9DhARN5G68r0BWEg64pkBvJzU5e8TedE/Av6d1B3rpcBvga/k1zgL+DFwekTsGhGnF97ibcDrgD8F3gkcncvPAa4F9iKdYPzy2Gyh2bPcAOwu6U/yxWtzgW8X5n8Z2AN4GemX8ElA8VfwoUClS+tngIskaYTfgfKJiK57ALNJH3ofsKCNcfQDa4E1wKpctjewArgj/90rlwv4EvAH4C7goMLrzCMl8AdJP33/uDDv9cDdNd5/BvBw4Xkvqemo8nwxEMBdhbL/yrHdAfwG+CYp4Vfi6wNurRJfZZ15hfKD8/b35XU1yv25GNgE3FYo+xSpt8ua/Di2MO/M/N63A0cPVz+AqcCNufwyYKd21+VOrt8j+Kyq1v0q35m3AP8E/Gve1hWk7uMB/DHwJDC9sM77SM2fACeTLnarzHt+Xu/F1b4DuSyAvwBWki6K2wIsqzfmNu3fnYGbgF8A64D/16w63PaNG8HO2AG4k3QUsFPeKdPbFEs/MGlQ2WcqX1RgAfDpPH0s8IO8zgeBGwuV7q6c2P41V9AtwCP5sQXYmpd9PnAhcA/waH4EsEOe/6wKD7wxz/91oWwt8MM8/c95//0mv+atpOR/WJX49ib9IriLZ/6R3ZSXVd62Y0a5P98IHMRzk/5Hqyw7Pcc+IX8R7sx1o2b9AJYCc/P014C/bXd97uT6PYLPqmrdr/KdeQvp1+o9wBLgRJ5J+ofmvxML68wG7sjTJwM/GfSaAby82negMP/15AMZ0q+Kh3IdGjbmNu1fAbvm6R1Jif6wZtThbmze2X5Ze0Q8Sao0c9ocU9Ec4OI8fTFwfKG80m65HthT0j6kn5lrgH1I27INODMi9syPPSJi17zeGcArgEMjYnfSFw9SBYFUubeLiB9Vie+lpOQOaUyYnSPiJTmGV5J+ZdwwKL4VEbE5Ih4mHQ3NzvN2j4gbItXASwrbOiI53s11Lj4HWBIRv4+Iu0lHPodQo37kNtw/I50whGd/Np2k0+s3UPOzqlX3q61/D3A36WDo+4VZD5J+DRevKH0p9V/bUKtnygMRcUue3pbfZ3IjMbdSJFvz0x3zI2hCHe7GpF/tsvbJbYolgGslrc6X0QP0RMSGPH0/0JOnq8V9AOmo502kHge/AFYB8yW9CEDSZEmV9sfdSM1Aj0jaG/jkoHg2ko4Qh7ILUKlMRwAvztN75O15uhDf5BpxV8rvq1I+Fk6XdKukxZL2ymVDxVWt/AXAI5G6UI51vKPRSfW7UbXqfi2nAn8WEY8Xyp4iHc2eK2k3SfsDH+HZbf5Dqec7sCup3t84gphbRtIOktaQmtFWkH4BjroOd2PS7yRHRMRBpBEUT5P0xuLMfARc7cjjv0mJ/irgSOCnPHOi6lrST88bJD0KXEc6ugf4N1LSfpB0MuzqQa/7ReAduVfDl+qI/3XAbpK25ukvRh4YrINcQGrnnQFsAM5rbzhWjyHqfnGZOyNiVZVZHwQeJzUl/gT4DukcQj2G/A5I2hWYBVwbEY82GnMrRcRTETGDdM7tENIv8VHruLF36tAxl7VHxED+u0nS5aQPZqOkfSJiQ24C2ZQXHwD2i4gpAHlArVmVR0Q8lZd7MfCNiPhulff7TV6+6MLC/J+Rfj0UTQWuLDy/m9SsA/AFYE5EvELShcDPC8tV9uvAoPfcl9RuOpCnBy/fVBGxsTIt6es8sy1D1YNq5Q+Rmqyel4+UOnU4hI6p3yNQq+5vV6n/Vcq38UwzJcDf1Fjum6TOB8UyFaaf8x2ozJe0I/A94F8i4vP1xtxuEfGIpJWk8xKjrsPdeKTfEZe1S5ooabfKNHAUcFuOZV5ebB5wRZ5eBpyk5DBgS/5ZeQ1wVO6Dv1d+nWvGMPSmxJfnPSrpsNxeflLhtZomfxErTiDt40q8c/N1DVOBaaQTy1XrRz6KWwm8o8q2d5KOqN8jVKtutV2uoxcB6wsJHzo0ZkkvlLRnnt4FeCvpXODo63C7z1KP5EE6+fNrUhvXWW2K4WWknhWVLlVn5fIXANeTuoBdB+wdz5yNPz/HvBaYWXit95BORPYBpzQxxu+SmkT+QGr/O7WZ8QEzSUn4TtL1AqPtslkt3m/leG4lfUH3KSx/Vn7v2yn0HKpVP/JndlPejv8AJrS7Lndq/W5m3eqEB+n8VeR6tL37b6fGTLqe4Oc53tuAT+TyUddhD8NgZlYi3di8Y2ZmI9TRJ3InTZoUU6ZMqTrv8ccfZ+LEia0NaAS6Ic5uiBFGHufq1asfjIgXNrpeHiJgFTAQEW/L5w6WkJoEVgMnRsSTkiaQrlM4mHTC+K8iDxom6UxS08dTwIciYtjzNUPV+27WLfWsmdq1zUPW+Xa3XQ31OPjgg6OWlStX1pzXSbohzm6IMWLkcZKHyGj0Qeof/h3gyvy86tWQwAeAr+XpucBlebrqVcPDve9Q9b6bdUs9a6Z2bfNQdd7NO2ZV5NFLjwO+kZ8PdUVv8arO/wSOzMvXumrYrG06unlnKGsHtnDygqsaWqd/4XFjFI2NQ/8G/CPpKmgY+ore7VfRRsQ2SVvy8pNJF9FRZZ1nUeHG6D09PfT29j5nmbUDW0a0IQdO3mNE6zXb1q1bq27XeNaJ29y1Sd9srEh6G7ApIlZLmtWK94zCjdFnzpwZs2Y9920bPcip6H/3c1+rHXp7e6m2XeNZJ26zk77Zcx0OvF3SsaQhbncnXd5f62rIylW090l6Hmkco4fo7qtrbZxym77ZIBFxZkTsG2nIgLmkoajfTe2rIYtXdb4jLx/UvmrYrG18pG9Wv48BSyT9M+lqyYty+UXAtyT1kYYbngsQEeskLSXduGMbcFo8M8aSWVs46ZsNISJ6SQPMEWkE0uf0vomI3wF/WWP9c4Fzxy5Cs8a4ecfMrESc9M3MSsRJ38ysRJz0zcxKpK6kL6lf0lpJayStymV7S1oh6Y78d69cLklfktSX72t6UOF15uXl75A0r9b7mZnZ2GjkSP/NETEjImbm5wuA6yNiGukmBAty+TGk/sjTSJeVXwDpnwTpRt6HknpAfLJwk2szM2uB0TTvFAeZGjz41CV5sLcbSFcx7gMcDayIiM0R8TDp7u6zR/H+ZmbWoHr76QdwraQALszjhPREuk8qwP1AT57ePvhUVhlkqlb5s9Qz8BRAzy5wxoHbqs6rpR0DH3XigEuDdUOM0D1xmnWyepP+ERExIOlFwApJvyrOjIjI/xBGrZ6BpwC+fOkVnLe2sWvL2jHwVCcOuDRYN8QI3ROnWSerq3knIgby303A5aQ2+Y252Yb8d1NevNYgUx58ysyszYZN+pImStqtMg0cRbo7e3GQqcGDT52Ue/EcBmzJzUDXAEdJ2iufwD0ql5mZWYvU0z7SA1yebgTE84DvRMTVkm4Glko6FbgHeGdefjlwLOkuQU8ApwBExGZJ5wA35+XOjojNTdsSMzMb1rBJPw8y9Zoq5Q8BR1YpD+C0Gq+1GFjceJhmZtYMviLXzKxEnPTNzErESd/MrER8ExWzcW7KCG6o3r/wuDGIxDqBj/TNzErESd/MrESc9M3MSsRJ32wQSftJWinpl5LWSfq7XO57SFjXc9I3e65twBkRMR04DDhN0nR8DwkbB5z0zQaJiA0RcUuefgxYTxoG3PeQsK7nLptmQ5A0BXgtcCNjdA+J/D7D3kei0ftHjMZY3LegjPdD6MRtdtI3q0HSrsD3gA9HxKN50EGgufeQyK837H0kTh5Bf/uRGot7T5TxfgiduM1u3jGrQtKOpIR/aUR8Pxf7HhLW9eoZT79WT4ZPSRqQtCY/ji2sc2buyXC7pKML5bNzWZ+kBdXez6zdlA7pLwLWR8TnC7N8DwnrevU071R6MtySb6ayWtKKPO8LEfG54sK5l8Nc4FXAS4DrJB2QZ58PvJXUtnmzpGUR8ctmbIhZEx0OnAislbQml30cWIjvIWFdrp7x9DcAG/L0Y5IqPRlqmQMsiYjfA3dL6iN1VwPoy+PzI2lJXtZJ3zpKRPwEUI3ZvoeEdbWGTuQO6slwOHC6pJOAVaRfAw+T/iHcUFit2GNhcE+GQ6u8x7C9GAB6dmm8N0M7zqJ34tn7wbohRuieOM06Wd1Jv0pPhguAc4DIf88D3jPagOrpxQDw5Uuv4Ly1jXU+GoseCcPpxLP3g3VDjNA9cZp1srqyZrWeDBGxsTD/68CV+elQPRbck8HMrI3q6b1TtSdDpetadgJwW55eBsyVNEHSVNKl6TeRTmZNkzRV0k6kk73LmrMZZmZWj3qO9Gv1ZHiXpBmk5p1+4H0AEbFO0lLSCdptwGkR8RSApNNJXdZ2ABZHxLombouZmQ2jnt47tXoyLB9inXOBc6uULx9qPTMzG1u+ItfMrESc9M3MSsRJ38ysRJz0zcxKxEnfzKxEnPTNzErESd/MrESc9M3MSsRJ38ysRJz0zcxKxEnfzKxEnPTNzErESd/MrERanvQlzZZ0u6Q+SQta/f5mreY6b52kpUlf0g7A+cAxwHTSmPzTWxmDWSu5zlunaewms6N3CNAXEXcBSFoCzCHdcMVsPHKdt2FNWXDViNbrX3hcw+u0OulPBu4tPL8POLS4gKT5wPz8dKuk22u81iTgwUbeXJ9uZOmmaTjONuiGGGHkce7f7EAaMGydh4bqfUuM0XelW+pZM43pNg/xOdWs861O+sOKiEXAouGWk7QqIma2IKRR6YY4uyFG6J44R6Leet/NxvPnV0snbnOrT+QOAPsVnu+by8zGK9d56yitTvo3A9MkTZW0EzAXWNbiGMxayXXeOkpLk35EbANOB64B1gNLI2LdCF+uW34K1x2npG9L+vdBZW+S9JCkfZof2nbjbl92iibX+W7XdZ9fE3TcNisi2h2DZZJeAKwDToyIFZJ2Bm4F/iUivtmE139eTkJmVlK+IreDRMRDwAeBRZImAp8E7gR+Jemnkh6R9AtJsyrrSDpF0npJj0m6S9L7CvNmSbpP0sck3Q/8O2ZWah3Xe6fsIuI/JM0FvgscDhwE3AKcCFwNHAl8T9IrI+IBYBPwNuAu4I3ADyTdHBG35Jd8MbA3qQuX/8mblVxXJoFOuaxd0n6SVkr6paR1kv4ul39K0oCkNflxbGGdM3Pct0s6usZLfwD4M+Bs0om/5RGxPCKejogVwCrgWICIuCoi7ozkf4BrgTcUXutp0i+G24Gbcjyrcix7S1oh6Y78d69cLklfynHeKumgJu62qiS9orC/1kh6VNKHm7AvrQNI6pe0tlj/xhNJiyVtknRboazq96vtIqKrHsAOpCaPlwE7Ab8Aprcpln2Ag/L0bsCvSZfafwr4aJXlp+d4JwBT83bsUOO1+4G3AF8Ffgc8Ung8DizIyx0D3ABszvOeBM7J82YBA4XXmzToPT5TeJ0FwKfz9LHADwABhwE3tuEzvp/062TU+9KP9j+q1b/x9CD9yj4IuK1QVvX71e5HNx7pb7+sPSKeBCqXtbdcRGyI3IwSEY+RemdMHmKVOcCSiPh9RNwN9JG2Zyj3At+KiD0Lj4kRsVDSBOB7wOeAnojYE1hOStbbwxwmnovz9MXA8YXySyK5AdhzjHsPDXYkcGdE3DPEMiPZl2ZjIiJ+RDrwKqr1/Wqrbkz61S5rHyrRtoSkKcBrgRtz0em5aWRx4WfdSGL/NvDnko6WtIOknfMJ2n1Jv3QmAA8A2yQdAxxV43UCuFbS6nzJP6R/FBvy9P1AzyjibKbKOY2KZu1La59q9W+8q/X9aqtuTPodR9KupCPuD0fEo8AFwB8DM4ANwHkjfe2IuJd0xPBxUnK/F/gH4I/yr4sPAUuBh4G/pvaFP0dExEGk5qDTJL1x0PsEQ/8qaIl8AdPbgf/IRU3bl9ZWQ9a/8a5Tvl/Qnb13Ouqydkk7khL+pRHxfYCI2FiY/3Xgyvy07tgjYkph+kbgTTWWO580dG+1eb35PYiIgfx3k6TLSU0hGyXtExEbcvPNpkbjHAPHALdU9mEz9qW1X43696P2RjXman2/2qobj/Q75rJ2SQIuAtZHxOcL5cX27xOAyhn9ZcBcSRMkTQWmATe1IM6JknarTJOagG7L8czLi80DrijEeVLuxXMYsKXwM3WsvYtC006n7Utr3BD1b7yr9f1qq6470o+IbZIql7XvACyO9l3Wfjip//xaSWty2cdJN8qYQfo51w+8DyAi1klaShpLfRtwWkQ81YI4e4DL0/8ongd8JyKulnQzsFTSqcA9wDvz8stJPXj6gCeAU1oQYyUhvJW8v7LPdNi+tMZVrX/tDam5JH2X1FtukqT7SN2kF1L9+9VWHobBzKxEurF5x8zMRqijm3cmTZoUU6ZMqTrv8ccfZ+LEia0NqAN5PyRD7YfVq1c/GBEvbHFIZh2po5P+lClTWLWq+hXbvb29zJo1q7UBdSDvh2So/SBpqIu8zErFzTtmZiXS0Uf6Vk5TFlzV8DrfnO0mLrN6+EjfzKxEnPTNzErESd/MrESc9M3MSsRJ38ysRJz0zcxKxEnfzKxEnPTNzErESd/MrETqSvqS+iWtlbRG0qpctrekFZLuyH/3yuWS9CVJffm+pgcVXmdeXv4OSfNqvZ+ZmY2NRo703xwRMyJiZn6+ALg+IqYB1+fnkG53Ny0/5pPucYqkvUk3FjiUdKu0TxZucm1mZi0wmuadOcDFefpi4PhC+SWR3ADsmW95dzSwIiI2R8TDwApg9ije38zMGlTvgGsBXCspgAsjYhHQU7hv6v2kW6IBTAbuLax7Xy6rVf4skuaTfiHQ09NDb29v1YC2bt1ac16ZjMf9cMaB2xpeZzzuB7OxUG/SPyIiBiS9CFgh6VfFmafeipsAAAgFSURBVBER+R/CqOV/KIsAZs6cGbXGSPc48sl43A8nj3CUzfG2H8zGQl3NOxExkP9uAi4ntclvzM025L+b8uIDwH6F1ffNZbXKzcysRYZN+pImStqtMg0cBdwGLAMqPXDmAVfk6WXASbkXz2HAltwMdA1wlKS98gnco3KZmZm1SD3NOz3A5ZIqy38nIq6WdDOwVNKpwD3AO/Pyy4FjgT7gCeAUgIjYLOkc4Oa83NkRsblpW2JmZsMaNulHxF3Aa6qUPwQcWaU8gNNqvNZiYHHjYZqZWTP4ilwzsxJx0jczKxEnfTOzEnHSNzMrESd9M7MScdI3MysRJ30zsxJx0jczKxEnfTOzEnHSNzMrESd9M7MScdI3MysRJ30zsxKpZzz9/SStlPRLSesk/V0u/5SkAUlr8uPYwjpnSuqTdLukowvls3NZn6QF1d7PzMzGTj3j6W8DzoiIW/LNVFZLWpHnfSEiPldcWNJ0YC7wKuAlwHWSDsizzwfeSro/7s2SlkXEL5uxIWZmNrx6xtPfAGzI049JWk+VG5oXzAGWRMTvgbsl9ZFurwjQl8fnR9KSvKyTvplZizTUpi9pCvBa4MZcdLqkWyUtzrdAhPQP4d7CavflslrlZmbWIvU07wAgaVfge8CHI+JRSRcA5wCR/54HvGe0AUmaD8wH6Onpobe3t+pyW7durTmvTMbjfjjjwG0NrzMe94PZWKgr6UvakZTwL42I7wNExMbC/K8DV+anA8B+hdX3zWUMUb5dRCwCFgHMnDkzZs2aVTWm3t5eas0rk/G4H05ecFXD63xz9sRxtx/MxkI9vXcEXASsj4jPF8r3KSx2AnBbnl4GzJU0QdJUYBpwE+mG6NMkTZW0E+lk77LmbIaZmdWjniP9w4ETgbWS1uSyjwPvkjSD1LzTD7wPICLWSVpKOkG7DTgtIp4CkHQ6cA2wA7A4ItY1cVvMzGwY9fTe+QmgKrOWD7HOucC5VcqXD7WemZmNLV+Ra2ZWIk76ZmYl4qRvZlYiTvpmZiXipG9mViJO+mZmJeKkb2ZWIk76ZmYl4qRvZlYiTvpmZiXipG9mViJO+mZmJeKkb2ZWIk76ZmYl0vKkL2m2pNsl9Ula0Or3NzMrs5YmfUk7AOcDxwDTSTdimd7KGMzMyqzuG6M3ySFAX0TcBSBpCTCHdJethqwd2NLwvVT7Fx7X6NuYmY0rrU76k4F7C8/vAw4tLiBpPjA/P90q6fYarzUJeLCRN9enG1m6azS8H8ajN396yP2wfytjMetkrU76w4qIRcCi4ZaTtCoiZrYgpI7m/ZB4P5jVp9UncgeA/QrP981lZmbWAq1O+jcD0yRNlbQTMBdY1uIYzMxKq6XNOxGxTdLpwDXADsDiiFg3wpcbtgmoJLwfEu8HszooItodg5mZtYivyDUzKxEnfTOzEumapC/pLyWtk/S0pJpd88b7MA+S9pa0QtId+e9eNZZ7StKa/Bg3J8uH+3wlTZB0WZ5/o6QprY/SrHN1TdIHbgP+AvhRrQVKMszDAuD6iJgGXJ+fV/PbiJiRH29vXXhjp87P91Tg4Yh4OfAFYHxekmc2Ql2T9CNifUTUujq3YvswDxHxJFAZ5mE8mQNcnKcvBo5vYyytVs/nW9w//wkcKUktjNGso3VN0q9TtWEeJrcplrHSExEb8vT9QE+N5XaWtErSDZLGyz+Gej7f7ctExDZgC/CClkRn1gU6ahgGSdcBL64y66yIuKLV8bTLUPuh+CQiQlKtPrf7R8SApJcBP5S0NiLubHasZtZdOirpR8RbRvkS42KYh6H2g6SNkvaJiA2S9gE21XiNgfz3Lkm9wGuBbk/69Xy+lWXuk/Q8YA/godaEZ9b5xlvzThmGeVgGzMvT84Dn/AKStJekCXl6EnA4Ixi+ugPV8/kW9887gB+Gr0A0265rkr6kEyTdB7weuErSNbn8JZKWw/Y23MowD+uBpaMY5qFTLQTeKukO4C35OZJmSvpGXuZPgFWSfgGsBBZGRNcn/Vqfr6SzJVV6KF0EvEBSH/ARavduMislD8NgZlYiXXOkb2Zmo+ekb2ZWIk76ZmYl4qRvZlYiTvo2JiR9VtKvJN0q6XJJe9ZYruoAapIuzeW3SVosacdh3u+QwgBzv5B0QrO3yWw8cNK3UZM0S9I3BxWvAF4dEX8K/Bo4s8p6Qw2gdinwSuBAYBfgvcOEcRswMyJmALOBC/PFWWZW4KRvYyIirs396gFuIF09O1jNAdQiYnlkwE2V9SVNzEf+N0n6uaTK8k8U3m9nwH2Rzapw0rdWeA/wgyrlww6glpt1TgSuzkVnka6yPQR4M/BZSRPzsodKWgesBd5f+CdgZpl//tqISboRmADsCuwtaU2e9bGIqFwxfRawjdRcMxJfBX4UET/Oz48C3i7po/n5zsBLgfURcSPwKkl/Alws6QcR8bsRvq/ZuOSkbyMWEYdCatMHTo6Ik4vzJZ0MvA04ssb4N0MOoCbpk8ALgfcVXxb4P0PdWyEi1kvaCrwaWFX/FpmNf27esTEhaTbwj8DbI+KJGovVHEBN0nuBo4F3RcTThXWuAT5YuTGKpNfmv1MrJ24l7U86Cdzf9A0z63JO+jZWvgLsBqzI3Si/Bg0NkPc10g1ifpbX/0QuPwfYEbg1t9+fk8uPAH6Rm5guBz4QEQ+O+VaadRkPuGZmViI+0jczKxEnfTOzEnHSNzMrESd9M7MScdI3MysRJ30zsxJx0jczK5H/D8CFNKtImGqKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "covid_data.hist()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(77, 8)" + ] + }, + "execution_count": 153, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline \n", + "import matplotlib.pyplot as plt \n", + "covid_mexico = covid_data[covid_data['GeoId']=='MX']\n", + "covid_mexico.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 154, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWmElEQVR4nO3df5Bd5X3f8fd30SJtJGwtkqrBWohIxNiDXbE4OxRHHtc2cUNtj6Cjhtp1XLWl5Y9kHJNkguR03OCm7WClk9iedFwrQCynxJhBJmIMuGEEKW0mJlmMWH45hmDLWhXQslkZLZbWK+63f9wjsyv0467uPXs5e96vGc2957n37PneWelzHz3nPM+JzESSVB893S5AkjS/DH5JqhmDX5JqxuCXpJox+CWpZhZ1u4BWrFy5MteuXdvtMiSpUh555JGXMnPV8e2VCP61a9cyPDzc7TIkqVIiYu+J2h3qkaSaMfglqWYMfkmqGYNfkmrG4JekmjH4K2p8corH9h1kfHKq26VIqphKXM6p2Xbt2c+WnSP09vQw3WiwbdN6Ng6u6XZZkirCHn/FjE9OsWXnCEemGxyaOsqR6QY37Byx5y+pZQZ/xYxOHKa3Z/avrbenh9GJw12qSFLVGPwVM9Dfx3SjMattutFgoL+vSxVJqhqDv2JWLFvMtk3rWdLbwzmLF7Gkt4dtm9azYtnibpcmqSI8uVtBGwfXsGHdSkYnDjPQ32foS5oTg7+iVixbbOBLOiMO9UhSzRj8klQzBr8k1YzBL0k1Y/BLUs0Y/JJUMwa/JNVMqcEfEcsj4s6I+E5EPB0R74qIcyPi/oh4pnjsL7MGSdJsZff4Pw98MzPfBlwCPA1sBXZn5kXA7mJbkjRPSgv+iHgz8B7gFoDM/HFmHgSuAnYUb9sBXF1WDZKk1yuzx38hMAb8cUQ8GhE3R8RSYHVmPl+85wVg9Yl2jojrImI4IobHxsZKLFOS6qXM4F8EvBP4YmZeCrzCccM6mZlAnmjnzNyemUOZObRq1aoSy5Skeikz+EeB0cx8uNi+k+YXwYsRcR5A8XigxBokSccpLfgz8wVgX0S8tWi6AngKuBvYXLRtBnaVVYMk6fXKXpb5E8BtEXE28Bzwb2h+2dwREdcCe4FrSq5BkjRDqcGfmXuAoRO8dEWZx5UknZwzdyWpZgx+SaoZg1+Sasbgl6SaMfglqWYMfkmqGYNfkmrG4JekmjH4JalmDH5JqhmDX5JqxuCXpJox+CWpZgx+SaoZg1+Sasbgl6SaMfglqWYMfkmqGYNfkmrG4K+o8ckpHtt3kPHJqW6XIqliSr3Zusqxa89+tuwcobenh+lGg22b1rNxcE23y5JUEfb4K2Z8cootO0c4Mt3g0NRRjkw3uGHniD1/SS0rNfgj4vsR8XhE7ImI4aLt3Ii4PyKeKR77y6xhoRmdOExvz+xfW29PD6MTh7tUkaSqmY8e//syczAzh4rtrcDuzLwI2F1sq0UD/X1MNxqz2qYbDQb6+7pUkaSq6cZQz1XAjuL5DuDqLtRQWSuWLWbbpvUs6e3hnMWLWNLbw7ZN61mxbHG3S5NUEZGZ5f3wiO8BE0ACX8rM7RFxMDOXF68HMHFs+7h9rwOuA7jgggt+bu/evaXVWUXjk1OMThxmoL/P0Jd0QhHxyIzRlp8o+6qed2fm/oj4B8D9EfGdmS9mZkbECb95MnM7sB1gaGiovG+nilqxbLGBL+mMlDrUk5n7i8cDwF3AZcCLEXEeQPF4oMwaJEmzlRb8EbE0Is459hz4J8ATwN3A5uJtm4FdZdWwkDmBS9KZKnOoZzVwV3MYn0XAn2bmNyPib4A7IuJaYC9wTYk1LEhO4JLUjtKCPzOfAy45Qfs4cEVZx13oZk7gOkLzss4bdo6wYd1Kx/wltcSZuxXjBC5J7TL4K8YJXJLaZfBXjBO4JLXL1TkraOPgGi4+703s2XeQwfOXs271Od0uSVKFGPwV5FU9ktrhUE/FuCyzpHYZ/BXjVT2S2mXwV4xX9Uhql8FfMV7VI6ldntytoI2Da9iwbqXLMks6IwZ/Rbkss6Qz5VCPJNWMwS9JNWPwS1LNGPySVDMGvyTVjMEvSTVj8EtSzRj8klQzBr8k1YzBL0k1U3rwR8RZEfFoRHyj2L4wIh6OiGcj4msRcXbZNUiSXjMfPf5PAk/P2P4s8AeZuQ6YAK6dhxokSYVSgz8iBoAPATcX2wG8H7izeMsO4Ooya5AkzVZ2j/9zwA3AsTuHrAAOZubRYnsUOOHNYiPiuogYjojhsbGxksusnvHJKR7bd9BbLkqas9KWZY6IDwMHMvORiHjvXPfPzO3AdoChoaHscHmV5s3WJbWjzB7/BmBjRHwfuJ3mEM/ngeURcewLZwDYX2INC443W5fUrtKCPzM/lZkDmbkW+AjwQGZ+DHgQ+OfF2zYDu8qqYSHyZuuS2tWN6/i3AL8REc/SHPO/pQs1VJY3W5fUrnkJ/sz8i8z8cPH8ucy8LDPXZeYvZaZjFHPgzdYltct77laQN1uX1A6Dv6K82bqkM+VaPZJUMwa/JNWMwS9JNTPn4I+Inoh4UxnFSJLK11LwR8SfRsSbImIp8ATwVET8VrmlSZLK0GqP/+LMfJnmSpr3ARcCHy+tKklSaVoN/t6I6KUZ/Hdn5jTgwmmSVEGtBv+XgO8DS4GHIuKngZfLKkqSVJ6WJnBl5heAL8xo2hsR7yunJElSmVo9ubs6Im6JiPuK7YtprqwpSaqYVod6vgz8L+AtxfZ3gevLKEiSVK5Wg39lZt5BcQvF4taJr5ZWlSSpNK0G/ysRsYLiSp6IuBz4YWlVSZJK0+rqnL8B3A38bET8JbCK1+6iJUmqkFav6vl2RPxj4K1AAH9bXMsvSaqYVq/q+SWgLzOfpDmJ62sR8c5SK5MklaLVMf5PZ+ahiHg3cAXN++R+sbyyJEllaTX4j13B8yHgjzLzHuDsckqSJJWp1eDfHxFfAv4FcG9ELJ7DvpKkN5BWw/samhO4fjEzDwLnAi7LLEkV1FLwZ+aPMvPrwA8j4gKgF/jOqfaJiCUR8dcR8VhEPBkRnynaL4yIhyPi2Yj4WkQ4ZCRJ86jVq3o2RsQzwPeA/1083nea3aaA92fmJcAgcGUx8euzwB9k5jpgArj2TIuXJM1dq0M9vwtcDnw3My8EfgH41ql2yKbJYrO3+JPA+4E7i/YdNC8PlSTNk1aDfzozx4GeiOjJzAeBodPtFBFnRcQe4ABwP/B3wMFirR+AUWDNSfa9LiKGI2J4bGysxTLrY3xyisf2HWR8cqrbpUiqmFaXbDgYEcuAh4DbIuIA8MrpdsrMV4HBiFgO3AW8rdXCMnM7sB1gaGjIu33NsGvPfrbsHKG3p4fpRoNtm9azcfCE35+S9Dqn7PFHxLqI2ABcBfwI+HXgm8A48IlWD1JcCfQg8C5geUQc+8IZAPafQd21NT45xZadIxyZbnBo6ihHphvcsHPEnr+klp1uqOdzwMuZ+UpmNjLzaGbuoNl7v/FUO0bEqqKnT0T0AR8Anqb5BXBsgbfNwK426q+d0YnD9PbM/rX19vQwOnG4SxVJqprTDfWszszHj2/MzMcjYu1p9j0P2BERZ9H8grkjM78REU8Bt0fEfwYepbn8g1o00N/HdKMxq2260WCgv69LFUmqmtMF//JTvHbKpMnMEeDSE7Q/B1x2+tJ0IiuWLWbbpvXccNwY/4pli7tdmqSKOF3wD0fEv8/MP5rZGBH/DnikvLJ0KhsH17Bh3UpGJw4z0N9n6Euak9MF//XAXRHxMV4L+iGaC7T9szIL06mtWLbYwJd0Rk4Z/Jn5IvDzEfE+4B1F8z2Z+UDplUmSStHqHbgepHk1jiSp4lxaWZJqxuCXpJox+CvKtXoknalW1+rRG4hr9Uhqhz3+inGtHkntMvgrxrV6JLXL4K8Y1+qR1C6Dv2KOrdWzpLeHcxYvYklvj2v1SJoTT+5WkGv1SGqHwV9RrtUj6Uw51CNJNWPwS1LNGPySVDMGvyTVjMEvSTVj8EtSzRj8klQzpQV/RJwfEQ9GxFMR8WREfLJoPzci7o+IZ4rH/rJqkCS9Xpk9/qPAb2bmxcDlwK9GxMXAVmB3Zl4E7C62JUnzpLTgz8znM/PbxfNDwNPAGuAqYEfxth3A1WXVIEl6vXkZ44+ItcClwMPA6sx8vnjpBWD1Sfa5LiKGI2J4bGxsPsqUpFooPfgjYhmwE7g+M1+e+VpmJpAn2i8zt2fmUGYOrVq1quwyJak2Sg3+iOilGfq3ZebXi+YXI+K84vXzgANl1iBJmq3Mq3oCuAV4OjN/f8ZLdwObi+ebgV1l1SBJer0yl2XeAHwceDwi9hRtvw3cBNwREdcCe4FrSqxBknSc0oI/M/8vECd5+YqyjitJOjVn7kpSzRj8klQzBr8k1YzBL0k1Y/BLUs0Y/JJUMwZ/RY1PTvHYvoOMT051uxRJFVPmBC6VZNee/WzZOUJvTw/TjQbbNq1n4+CabpclqSLs8VfM+OQUW3aOcGS6waGpoxyZbnDDzhF7/pJaZvBXzOjEYXp7Zv/aent6GJ043KWKJFWNwV8xA/19TDcas9qmGw0G+vu6VJGkqjH4K2bFssVs27SeJb09nLN4EUt6e9i2aT0rli3udmmSKsKTuxW0cXANG9atZHTiMAP9fYa+pDkx+CtqxbLFBr6kM+JQjyTVjMFfUU7gknSmHOqpICdwSWqHPf6KcQKXpHYZ/BXjBC5J7TL4K2agv48jR1+d1Xbk6KtO4JLUMoO/gjLzlNuSdCqlBX9E3BoRByLiiRlt50bE/RHxTPHYX9bxF6rRicP09c4+J9/Xu8ihHkktK7PH/2XgyuPatgK7M/MiYHexrTlwrR5J7Sot+DPzIeDvj2u+CthRPN8BXF3W8ReqFcsWc83PDcxqu2ZowFm8klo232P8qzPz+eL5C8DqeT5+5Y1PTnHHI6Oz2u4YHvVyTkkt69rJ3WyekTzpWcmIuC4ihiNieGxsbB4re2Pzck5J7Zrv4H8xIs4DKB4PnOyNmbk9M4cyc2jVqlXzVuAbnWP8kto138F/N7C5eL4Z2DXPx6881+OX1K7S1uqJiK8C7wVWRsQo8DvATcAdEXEtsBe4pqzjL2Suxy+pHaUFf2Z+9CQvXVHWMevE9fglnSln7kpSzRj8klQzBr8k1YzBL0k1Y/BLUs0Y/JJUMwa/JNWMwV9R45NTPLbvoIuzSZqz0iZwqTy79uxny84Rent6mG402LZpPRsH13S7LEkVYY+/YsYnp9iyc4Qj0w0OTR3lyHSDG3aO2POX1DKDv2JclllSuwz+ihno7+Pw9NFZbYenj7oss6SWGfwVFBGn3JakUzH4K2Z04jBLFp01q23JorMc6pHUMoO/YrwDl6R2GfwV4x24JLXL6/g7aHxyal7uirVxcA1vefMSHnrmJd5z0UqGLlxR2rEkLTwGf4fM56Sq//hnj/OVb/0AgC888Cz/6l0X8J+u+oelHEvSwuNQTwfM56SqZ1889JPQP+Yrf/UDnn3xUMePJWlhMvg7YD4nVe3Zd3BO7ZJ0PIO/A+bzSpvB85fPqV2Sjmfwd8B8XmnTv/Rseo6br9UTzXZJakVXgj8iroyIv42IZyNia1nHefun72Ht1nt4+6fvKesQP7FxcA1n9zTH+M/uaZR2Ynd04jBLz559Tn7p2YucwCUtMGUuvT7vwR8RZwH/HfinwMXARyPi4k4fZ+3We3hluvn8lenmdpnWbr2Hl4vfz8tT5R3PCVzSwrdrz342fPYBfvnmh9nw2Qe4e8/+jv78bvT4LwOezcznMvPHwO3AVZ08wMl6+GX1/AdvvHdO7e1wApe0sM3HVYLduI5/DbBvxvYo8I+Of1NEXAdcB3DBBRfM6QDHevqttrfr4JGcU3u7Ng6uYcO6lfMyWUzS/Dp2leARXvuf/bGrBDv1b/0Ne3I3M7dn5lBmDq1atWpO+y7tnVt7u5YvOfHqmCdr74QVyxZzyfnLDX1pgZmP4dxuBP9+4PwZ2wNFW8c8+bsfmlN7u/bc+ME5tUvSyczHcG5kljMccdIDRiwCvgtcQTPw/wb4l5n55Mn2GRoayuHh4Tkf6+2fbp7gXdpbXujPNHjjvRw8kixfEoa+pLZ0Yu2viHgkM4de1z7fwV8U80Hgc8BZwK2Z+V9O9f4zDX5JqrOTBX9XFmnLzHuBzl/yIkk6rTfsyV1JUjkMfkmqGYNfkmrG4JekmunKVT1zFRFjwN5u19GilcBL3S6iJH626lrIn8/PdnI/nZmvmwFbieCvkogYPtHlUwuBn626FvLn87PNnUM9klQzBr8k1YzB33nbu11Aifxs1bWQP5+fbY4c45ekmrHHL0k1Y/BLUs0Y/B0QEedHxIMR8VREPBkRn+x2TZ0WEWdFxKMR8Y1u19JpEbE8Iu6MiO9ExNMR8a5u19QpEfHrxd/JJyLiqxGxpNs1tSMibo2IAxHxxIy2cyPi/oh4pnjs72aNZ+okn+33ir+XIxFxV0Qs78SxDP7OOAr8ZmZeDFwO/GoZN5Dvsk8CT3e7iJJ8HvhmZr4NuIQF8jkjYg3wa8BQZr6D5jLoH+luVW37MnDlcW1bgd2ZeRGwu9iuoi/z+s92P/COzFxP8z4mn+rEgQz+DsjM5zPz28XzQzSDY013q+qciBgAPgTc3O1aOi0i3gy8B7gFIDN/nJkHu1tVRy0C+oobIP0U8P+6XE9bMvMh4O+Pa74K2FE83wFcPa9FdciJPltm/nlmHi02v0XzjoVtM/g7LCLWApcCD3e3ko76HHAD0DjdGyvoQmAM+ONiKOvmiFja7aI6ITP3A/8N+AHwPPDDzPzz7lZVitWZ+Xzx/AVgdTeLKdG/Be7rxA8y+DsoIpYBO4HrM/PlbtfTCRHxYeBAZj7S7VpKsgh4J/DFzLwUeIXqDhXMUox1X0Xzy+0twNKI+OXuVlWubF6fvuCuUY+I/0BzSPm2Tvw8g79DIqKXZujflplf73Y9HbQB2BgR3wduB94fEf+zuyV11CgwmpnH/od2J80vgoXgF4DvZeZYZk4DXwd+vss1leHFiDgPoHg80OV6Oioi/jXwYeBj2aGJVwZ/B0RE0Bwjfjozf7/b9XRSZn4qMwcycy3NE4MPZOaC6TVm5gvAvoh4a9F0BfBUF0vqpB8Al0fETxV/R69ggZy4Ps7dwObi+WZgVxdr6aiIuJLmMOvGzPxRp36uwd8ZG4CP0+wN7yn+fLDbRallnwBui4gRYBD4r12upyOK/8XcCXwbeJzmv/dKL28QEV8F/gp4a0SMRsS1wE3AByLiGZr/y7mpmzWeqZN8tj8EzgHuL3Llf3TkWC7ZIEn1Yo9fkmrG4JekmjH4JalmDH5JqhmDX5JqxuCXgIjImRPTImJRRIyd6WqkxYqfvzJj+70LcWVTVZPBLzW9ArwjIvqK7Q8A+9v4ecuBXzntu6QuMPil19xLcxVSgI8CXz32QrHm+58V66J/KyLWF+03Fuuo/0VEPBcRv1bschPws8Wkm98r2pbNWPf/tmI2rTTvDH7pNbcDHyluVrKe2SusfgZ4tFgX/beBr8x47W3ALwKXAb9TrNu0Ffi7zBzMzN8q3ncpcD1wMfAzNGd8S/PO4JcKmTkCrKXZ27/3uJffDfxJ8b4HgBUR8abitXsycyozX6K5QNjJlgX+68wczcwGsKc4ljTvFnW7AOkN5m6aa9i/F1jR4j5TM56/ysn/XbX6PqlU9vil2W4FPpOZjx/X/n+Aj0HzCh3gpdPcc+EQzcW1pDccexzSDJk5CnzhBC/dCNxarOD5I15bBvhkP2c8Iv6yuHH2fcA9na5VOlOuzilJNeNQjyTVjMEvSTVj8EtSzRj8klQzBr8k1YzBL0k1Y/BLUs38f4NOeoUsM4iTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "covid_mexico.plot(kind=\"scatter\", x=\"Month\", y=\"Cases\")" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateRepDayMonthYearCasesDeathsCountries and territoriesGeoId
39852019-12-313112201900MexicoMX
39842020-01-0111202000MexicoMX
39532020-01-0212202000MexicoMX
39242020-01-0313202020MexicoMX
39722020-01-13131202000MexicoMX
...........................
39742020-11-01111202000MexicoMX
39432020-11-02112202000MexicoMX
39732020-12-01121202000MexicoMX
39422020-12-02122202000MexicoMX
39212020-12-03123202040MexicoMX
\n", + "

77 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " DateRep Day Month Year Cases Deaths Countries and territories \\\n", + "3985 2019-12-31 31 12 2019 0 0 Mexico \n", + "3984 2020-01-01 1 1 2020 0 0 Mexico \n", + "3953 2020-01-02 1 2 2020 0 0 Mexico \n", + "3924 2020-01-03 1 3 2020 2 0 Mexico \n", + "3972 2020-01-13 13 1 2020 0 0 Mexico \n", + "... ... ... ... ... ... ... ... \n", + "3974 2020-11-01 11 1 2020 0 0 Mexico \n", + "3943 2020-11-02 11 2 2020 0 0 Mexico \n", + "3973 2020-12-01 12 1 2020 0 0 Mexico \n", + "3942 2020-12-02 12 2 2020 0 0 Mexico \n", + "3921 2020-12-03 12 3 2020 4 0 Mexico \n", + "\n", + " GeoId \n", + "3985 MX \n", + "3984 MX \n", + "3953 MX \n", + "3924 MX \n", + "3972 MX \n", + "... ... \n", + "3974 MX \n", + "3943 MX \n", + "3973 MX \n", + "3942 MX \n", + "3921 MX \n", + "\n", + "[77 rows x 8 columns]" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from datetime import datetime\n", + "mexico['DateRep'] =pd.to_datetime(mexico.DateRep, format=\"%d/%m/%Y\")\n", + "mexico_sort=mexico.sort_values(by='DateRep', ascending=True)\n", + "mexico_sort" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAX1UlEQVR4nO3df5Dc9X3f8edrpeV01QlzOh0aVWf5iIXtYvc4uxdsLOoaE8c/kgg6csEu42oSGrWZ4tpJWgTtZGJPmxk4zyTg/ETBjuUOdmA4u1KwDaEyxKkzJQhbOiMwBmNTnQJIvp6MjpzOJ+27f3y/F/ZOK+kk3Xd/fV6PGc3ufva7u++Pdu913/vs9/P5KiIwM7N0lBpdgJmZ1ZeD38wsMQ5+M7PEOPjNzBLj4DczS8zSRhewEKtWrYr+/v5Gl2Fm1lIef/zxH0dE7/z2lgj+/v5+du/e3egyzMxaiqTna7V7qMfMLDEOfjOzxDj4zcwS4+A3M0uMg9/MLDEO/sSNT06zd/9hxienG12KmdVJSxzOacXYsecAW0dGKZdKzFQqDG8aYOPg2kaXZWYF8x5/osYnp9k6MsrRmQpHpo9xdKbCTSOj3vM3S4CDP1FjE1OUS3Pf/nKpxNjEVIMqMrN6cfAnqq+7k5lKZU7bTKVCX3dngyoys3px8Ceqp6uD4U0DLCuXWNGxlGXlEsObBujp6mh0aWZWMH+5m7CNg2vZsH4VYxNT9HV3OvTNEuHgT1xPV4cD3ywxHuoxM0uMg9/MLDEOfjOzxDj4zcwS4+A3M0uMg9/MLDEOfjOzxDj4zcwSU2jwS7pA0n2SvifpKUmXS1op6SFJz+SX3UXWYGZmcxW9x38H8EBEvAm4FHgKuBnYFREXA7vy22ZmVieFBb+k1wDvAj4LEBE/jYjDwNXA9nyz7cA1RdVgZmYnKnKP/yLgEPBnkr4j6S5Jy4HVEfFCvs2LwOpaD5a0RdJuSbsPHTpUYJlmZmkpMviXAm8D/jgi3gq8wrxhnYgIIGo9OCK2RcRQRAz19vYWWKaZWVqKDP4xYCwiHs1v30f2i+AlSWsA8suDBdZgZmbzFBb8EfEisF/SG/Omq4AngZ3A5rxtM7CjqBrMzOxERa/H/zHgbknnAc8Bv0z2y+ZeSTcAzwPXFlyDmZlVKTT4I2IPMFTjrquKfF0zMzs5z9w1M0uMg9/MLDEOfjOzxDj4zcwS4+A3M0uMg9/MLDEOfjOzxDj4zcwS4+A3M0uMg9/MLDEOfjOzxDj4zcwS4+A3M0uMg9/MLDEOfjOzxDj4zcwS4+A3M0uMg9/MLDEOfmN8cpq9+w8zPjnd6FLMrA6KPtm6Nbkdew6wdWSUcqnETKXC8KYBNg6ubXRZZlYg7/EnbHxymq0joxydqXBk+hhHZyrcNDLqPX+zNldo8Ev6kaTvStojaXfetlLSQ5KeyS+7i6zBTm5sYopyae5HoFwqMTYx1aCKzKwe6rHHf2VEDEbEUH77ZmBXRFwM7MpvWwP0dXcyU6nMaZupVOjr7mxQRWZWD40Y6rka2J5f3w5c04AaDOjp6mB40wDLyiVWdCxlWbnE8KYBero6Gl2amRWo6C93A/hLSQHcGRHbgNUR8UJ+/4vA6oJrsFPYOLiWDetXMTYxRV93p0PfLAFFB/8VEXFA0oXAQ5K+V31nRET+S+EEkrYAWwDWrVtXcJlp6+nqcOCbJaTQoZ6IOJBfHgS+AlwGvCRpDUB+efAkj90WEUMRMdTb21tkmWZmSSks+CUtl7Ri9jrw88ATwE5gc77ZZmBHUTWYmdmJihzqWQ18RdLs63wxIh6Q9Bhwr6QbgOeBawuswU5hfHLaY/tmCSos+CPiOeDSGu3jwFVFva4tjGfsmqXLM3cT5Bm7Zmlz8CfIM3bN0ubgT5Bn7JqlzcGfIM/YNUubl2VO0PjkNK/rWc79N17BKz897qN6zBLj4E9MraN5Ln3tBY0uy8zqyEM9CfHRPGYGDv6k+GgeMwMHf1J8NI+ZgYM/KT6ax8zAX+4mx+vvm5mDP0Fef98sbR7qMTNLjIPfzCwxDn4zs8Q4+M3MEuPgNzNLjIPfzCwxDn4zs8Q4+M3MEuPgNzNLjIPfzCwxhQe/pCWSviPp/vz2RZIelfSspHsknVd0DWZm9qp67PF/HHiq6vZtwO9FxHpgArihDjWYmVmu0OCX1Af8AnBXflvAe4D78k22A9cUWYOZmc1V9B7/7cBNwOzZP3qAwxFxLL89Bqyt9UBJWyTtlrT70KFDBZdpZpaOwoJf0i8CByPi8bN5fERsi4ihiBjq7e1d5OpsfHKavfsP+3y7Zgkqcj3+DcBGSR8ElgHnA3cAF0hamu/19wEHCqzBatix5wBbR0Ypl0rMVCoMbxpg42DNP7zMrA0VtscfEbdERF9E9AMfBr4REdcDDwMfyjfbDOwoqgY70fjkNFtHRjk6U+HI9DGOzlS4aWTUe/5mCWnEcfxbgd+Q9CzZmP9nG1BDssYmpiiX5r7t5VKJsYmpBlVkZvVWl1MvRsQjwCP59eeAy+rxunaivu5OZiqVOW0zlQp93Z0NqsjM6s0zdxPT09XB8KYBlpVLrOhYyrJyieFNAz4Hr1lCfLL1BG0cXMuG9asYm5iir7vToW+WGAd/onq6Ohz4ZonyUI+ZWWLOOPgllSSdX0QxZmZWvAUFv6QvSjpf0nLgCeBJSf+52NLMzKwIC93jvyQiXiZbUO3rwEXARwuryszMCrPQ4C9LKpMF/86ImAGiuLLMzKwoCw3+O4EfAcuBb0p6HfByUUWZmVlxFnQ4Z0R8BvhMVdPzkq4spiQzMyvSQr/cXS3ps5K+nt++hGyBNTMzazELHer5PPAg8I/z298HPlFEQWZmVqyFBv+qiLiX/Exa+Vr6xwuryszMCrPQ4H9FUg/5kTyS3gH8pLCqzMysMAtdq+c3gJ3A6yV9C+jl1ZOpmJlZC1noUT3flvQvgDcCAp7Oj+U3M7MWs9Cjev4V0BkR+8gmcd0j6W2FVmZmZoVY6Bj/b0XEEUlXAFeRnS7xj4sry8zMirLQ4J89gucXgD+NiK8C5xVTkpmZFWmhwX9A0p3AdcDXJHWcwWPNzKyJLDS8ryWbwPW+iDgMrAS8LLOZWQtaUPBHxN9HxJeBn0haB5SB7xVamZmZFWKhR/VslPQM8EPgr/LLr5/mMcsk/a2kvZL2SfpU3n6RpEclPSvpHkn+rsDMrI4WOtTz34B3AN+PiIuAnwP+z2keMw28JyIuBQaB9+czfm8Dfi8i1gMTwA1nVbmZmZ2VhQb/TESMAyVJpYh4GBg61QMiM5nfLOf/AngPcF/evp1sXoCZmdXJQpdsOCypC/gmcLekg8Arp3uQpCXA48B64A+BHwCH80XeAMaAtSd57BZgC8C6desWWKadzPjkNGMTU/R1d9LT1dHocsysgU4Z/JLWA6uBq4Ep4NeB64HXAR873ZNHxHFgUNIFwFeANy20sIjYBmwDGBoa8mkez8GOPQfYOjJKuVRiplJheNMAGwdr/r41swScbqjnduDliHglIioRcSwitpOF+CcX+iL5IaAPA5cDF0ia/YXTBxw487JtocYnp9k6MsrRmQpHpo9xdKbCTSOjjE9ON7o0M2uQ0wX/6oj47vzGvK3/VA+U1Jvv6SOpE3gv8BTZL4DZlT03AzvOsGY7A2MTU5RLc9/mcqnE2MRUgyoys0Y73Rj/Bae4r/M0j10DbM/H+UvAvRFxv6QngT+X9N+B75Ct+2MF6evuZKZSmdM2U6nQ1326t8/M2tXpgn+3pF+NiD+tbpT0b8m+tD2piBgF3lqj/TngsjMt1M5OT1cHw5sGuGneGL+/4DVL1+mC/xPAVyRdz6tBP0S2QNu/LLIwWzwbB9eyYf0qH9VjZsBpgj8iXgLeKelK4C1581cj4huFV2aLqqerw4FvZsDCz8D1MNmXsmZm1uK8tLKZWWIc/GZmiXHwm5klxsFvZpYYB39ixien2bv/sJdsMEvYQlfntDbgxdrMDLzHnwwv1mZmsxz8ifBibWY2y8GfCC/WZmazHPyJmF2sbVm5xIqOpSwrl7xYm1mi/OVuQrxYm5mBgz85XqzNzDzUY2aWGAe/mVliHPxmZolx8JuZJcbBb2aWGAe/mVliHPxmZokpLPglvVbSw5KelLRP0sfz9pWSHpL0TH7ZXVQNZmZ2oiL3+I8BvxkRlwDvAP6DpEuAm4FdEXExsCu/bWZmdVJY8EfECxHx7fz6EeApYC1wNbA932w7cE1RNZiZ2YnqMsYvqR94K/AosDoiXsjvehFYfZLHbJG0W9LuQ4cO1aNMM7MkFB78krqAEeATEfFy9X0REUDUelxEbIuIoYgY6u3tLbpMM7NkFBr8kspkoX93RHw5b35J0pr8/jXAwSJrMDOzuYo8qkfAZ4GnIuJ3q+7aCWzOr28GdhRVg5mZnajIZZk3AB8FvitpT972X4BbgXsl3QA8D1xbYA1mZjZPYcEfEf8b0Enuvqqo1zUzs1PzzF0zs8Q4+M3MEuPgNzNLjIPfzCwxDn4zs8Q4+M3MEuPgNzNLjIO/zY1PTrN3/2HGJ6cbXYqZNYkiZ+5ag+3Yc4CtI6OUSyVmKhWGNw2wcXBto8syswbzHn+bGp+cZuvIKEdnKhyZPsbRmQo3jYx6z9/MHPztamxiinJp7ttbLpUYm5hqUEVm1iwc/G2qr7uTmUplTttMpUJfd2eDKjKzZuHgb1M9XR0MbxpgWbnEio6lLCuXGN40QE9XR6NLM7MG85e7bWzj4Fo2rF/F2MQUfd2dDn0zAxz8ba+nq8OBb2ZzeKjHzCwxDv4EeBKXmVXzUE+b8yQuM5vPe/xtzJO4zKwWB38bqzWJq4TY93cvN6giM2sGDv42VmsS19/PHOdXv7CbnXsONKgqM2s0B38bm53E1bFUc9qnj3nIxyxlhQW/pM9JOijpiaq2lZIekvRMftld1OtbZsP6VdzygX9CZ9nr9phZpsg9/s8D75/XdjOwKyIuBnblt60gO/YcYMNt3+DTDz7N1IzX7TGzTGHBHxHfBP7fvOarge359e3ANUW9fuqqj+h55afH/6F9eccSr9tjlrh6H8e/OiJeyK+/CKw+2YaStgBbANatW1eH0trL7BE9R3l1T3/5eUv41C+9mSvfdKFD3yxhDftyNyICiFPcvy0ihiJiqLe3t46VtYdaR/Qcj3Dom1ndg/8lSWsA8suDdX79ZHhZZjM7mXoP9ewENgO35pc76vz6SfGyzGZWS2HBL+lLwLuBVZLGgN8mC/x7Jd0APA9cW9TrW8bLMpvZfIUFf0R85CR3XVXUa5qZ2el55q6ZWWIc/GZmiXHwm5klxsFvZpYYB7+ZWWIc/GZmiXHwm5klxsHfxsYnp9m7/7BPuGJmc9R7yQarkx17DrB1ZJRyqcRMpcLwpgE2Dq5tdFlm1gS8x9+GqtfiPzJ9jKMzPtWimb3Kwd+GZtfir+ZTLZq1liKHaj3U04ZqrcXvUy2atY6ih2q9x9+GvBa/Weuqx1Ct9/jblNfiN2tNtU6bOjtUu1g/xw7+Nua1+M1aTz2Gaj3UY2bWROoxVNvWe/zjk9NtNdTRbv2x9uTP6bkreqi2bYO/3SYwtVt/rD35c7p4ihyqbcuhnnabwNRu/bH25M9p62jL4G/UBKaiJlx4Qpa1An9OW0dbDvU0YgJTkX/iekKWtQJ/TltHW+7x13sCU9F/4npClrUCf05bR0P2+CW9H7gDWALcFRG3LvZr1HMCUz0mXHhClrUCf05bQ92DX9IS4A+B9wJjwGOSdkbEk4v9WvWawFSvP3E9IctagT+nza8RQz2XAc9GxHMR8VPgz4GrG1DHovGfuGbWShox1LMW2F91ewx4+/yNJG0BtgCsW7euPpWdA/+Ja2atommP6omIbcA2gKGhoWhwOQviP3HNrBU0YqjnAPDaqtt9eZuZmdVBI4L/MeBiSRdJOg/4MLCzAXWYmSWp7kM9EXFM0o3Ag2SHc34uIvbVuw4zs1Q1ZIw/Ir4GfK0Rr21mlrq2nLlrZmYnp4jmP2BG0iHg+TN82CrgxwWU0wzct9bl/rWuVuzb6yKid35jSwT/2ZC0OyKGGl1HEdy31uX+ta526puHeszMEuPgNzNLTDsH/7ZGF1Ag9611uX+tq2361rZj/GZmVls77/GbmVkNDn4zs8Q0TfBLeq2khyU9KWmfpI/n7SslPSTpmfyyO2+/XtKopO9K+htJl1Y91/slPS3pWUk3n+I1N+fP+4ykzVXtvyNpv6TJNuzbA5L25nX8SX5inHbp2yP54/fk/y48l741U/8krajq1x5JP5Z0e7v0L2+/Ln/ufZJua9G+PSDpsKT757XfmD82JK06176ds4hoin/AGuBt+fUVwPeBS4Bh4Oa8/Wbgtvz6O4Hu/PoHgEfz60uAHwA/A5wH7AUuqfF6K4Hn8svu/Prs870jr2eyDft2fn4pYAT4cBv17RFgqF0/l/O2exx4V7v0D+gB/i/Qm2+3HbiqlfqWb3sV8EvA/fPa3wr0Az8CVi3mZ/Ss/m8aXcAp3rQdZKdnfBpYU/VGPl1j227gQH79cuDBqvtuAW6p8ZiPAHdW3b4T+Mi8bRYl+Ju0b2XgL4Dr2qVvFBD8zdS/qrY3kJ3MSO3SP+BngV1V7R8F/qiV+lZ1/7uZF/xV9/2IJgj+phnqqSapn+w35KPA6oh4Ib/rRWB1jYfcAHw9v17rDF9razxmodstqmbom6QHgYPAEeC+M+3DyTRD34A/y4dCfkuSzrQPp9Ik/YNsKfN7Ik+SxdLg/j0LvFFSv6SlwDXMPW/HOalT31pG052BS1IX2RDEJyLi5eqf3YgISTFv+yvJ3qQr6lroWWiWvkXE+yQtA+4G3gM8dK7P2SR9uz4iDkhakdfyUeALi/HETdK/WR8m69uiaXT/ImJC0q8B9wAV4G+A1y/Gcze6b82oqfb4JZXJ3qC7I+LLefNLktbk968h21Od3X4AuAu4OiLG8+aaZ/iS9PaqL8Y2nmy7IvqV19pUfYuIo2R/+p7zie6bpW8RMXt5BPgicNm59q2Z+pc/96XA0oh4fDH61kz9i4i/iIi3R8TlZMMx32+xvrWORo81VY19iWzv7PZ57Z9m7hcxw/n1dWR/Hr5z3vZLyb4wuohXv4h5c43XWwn8kGwsrzu/vnLeNov15W5T9A3o4tWxzaVke1c3tknflpKPnZJ9f3Ef8O/b5b2ruv9W4FPt+HMHXJhfdgN7gDe0Ut+qtn83TT7G39AXn/cfcgUQwGj+pu8BPkj2bf8u4Bngf1V9SO4CJqq23V31XB8k21v4AfBfT/Gav5K/0c8Cv1zVPkw2jlfJLz/ZDn0jG8t8LK/jCeD3yfYe26Fvy8mOdBkF9gF3AEva6XOZ3/cc8KY2/bn7EvBk/u+cjjZrYN/+GjgETJFlx/vy9v+Y3z4G/B1w12K9h2fzz0s2mJklpqnG+M3MrHgOfjOzxDj4zcwS4+A3M0uMg9/MLDEOfkuKpOP5hJt9ylYp/U1Jp/w5yJcR+NcLeO5+SVP58z8p6Qv5BCKzpuLgt9RMRcRgRLyZbMGuDwC/fZrH9AOnDf7cDyJiEPinZDM8rz3bQs2K4uC3ZEXEQWALcKMy/ZL+WtK383/vzDe9Ffjn+Z78r0taIunTkh5Ttn77v6vx3MeBvyVfzEvSP5P0V5Iel/Rg1ZIBj0i6I3/uJyQtyjITZqfSdIu0mdVTRDyn7GQ0F5Kt2fLeiDgq6WKymaRDZNP6/1NE/CKApC3ATyLiZyV1AN+S9Jdks0TJt1kGvB34eD7c8/tk678cknQd8DtkM1gB/lFEDEp6F/A54C116LolzMFv9qoy8AeSBoHjZOve1/LzwICkD+W3XwNcTDal//WS9pCt6/LViBiV9BayMH8oXxlyCfBC1fN9CSAivinpfEkXRMThRe6b2T9w8FvSJP0MWcgfJBvrfwm4lGwY9OjJHgZ8LCIenPdc/eRj/MpOr/etfNXGHwL7Ilt1spb566Z4HRUrlMf4LVmSeoE/Af4gskWrXgO8EBEVsvXuZ89HfITs1H2zHgR+bfaIHUlvkLS8+rkj4sdkQ0S3kC0x3Cvp8nz7sqQ3V21+Xd5+BdkQ0k8Wt6dmc3mP31LTmQ/FlMlWSvwfwO/m9/0RMCLp3wAPAK/k7aPAcUl7gc+TrfzZD3xb2djNIbIzRs33P4FPko31fwj4jKTXkP3c3U62iijAUUnfyWv6lRrPY7aovDqnWQNJeoTsi+Pdja7F0uGhHjOzxHiP38wsMd7jNzNLjIPfzCwxDn4zs8Q4+M3MEuPgNzNLzP8HdHB3kuxkNDoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "mexico_filter = mexico_sort[mexico_sort['Cases']!=0]\n", + "mexico_filter.plot(kind=\"scatter\", x=\"DateRep\", y=\"Cases\")" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateRepDayMonthYearCasesDeathsCountries and territoriesGeoId
39242020-01-0313202020MexicoMX
39232020-02-0323202010MexicoMX
39252020-02-29292202020MexicoMX
39202020-03-13133202050MexicoMX
39192020-03-141432020100MexicoMX
39182020-03-151532020150MexicoMX
39172020-03-161632020120MexicoMX
39162020-03-171732020290MexicoMX
39152020-03-181832020110MexicoMX
39142020-03-191932020250MexicoMX
39132020-03-202032020460MexicoMX
39122020-03-212132020392MexicoMX
39112020-03-222232020480MexicoMX
39102020-03-232332020650MexicoMX
39092020-03-242432020512MexicoMX
39222020-09-0393202020MexicoMX
39212020-12-03123202040MexicoMX
\n", + "
" + ], + "text/plain": [ + " DateRep Day Month Year Cases Deaths Countries and territories \\\n", + "3924 2020-01-03 1 3 2020 2 0 Mexico \n", + "3923 2020-02-03 2 3 2020 1 0 Mexico \n", + "3925 2020-02-29 29 2 2020 2 0 Mexico \n", + "3920 2020-03-13 13 3 2020 5 0 Mexico \n", + "3919 2020-03-14 14 3 2020 10 0 Mexico \n", + "3918 2020-03-15 15 3 2020 15 0 Mexico \n", + "3917 2020-03-16 16 3 2020 12 0 Mexico \n", + "3916 2020-03-17 17 3 2020 29 0 Mexico \n", + "3915 2020-03-18 18 3 2020 11 0 Mexico \n", + "3914 2020-03-19 19 3 2020 25 0 Mexico \n", + "3913 2020-03-20 20 3 2020 46 0 Mexico \n", + "3912 2020-03-21 21 3 2020 39 2 Mexico \n", + "3911 2020-03-22 22 3 2020 48 0 Mexico \n", + "3910 2020-03-23 23 3 2020 65 0 Mexico \n", + "3909 2020-03-24 24 3 2020 51 2 Mexico \n", + "3922 2020-09-03 9 3 2020 2 0 Mexico \n", + "3921 2020-12-03 12 3 2020 4 0 Mexico \n", + "\n", + " GeoId \n", + "3924 MX \n", + "3923 MX \n", + "3925 MX \n", + "3920 MX \n", + "3919 MX \n", + "3918 MX \n", + "3917 MX \n", + "3916 MX \n", + "3915 MX \n", + "3914 MX \n", + "3913 MX \n", + "3912 MX \n", + "3911 MX \n", + "3910 MX \n", + "3909 MX \n", + "3922 MX \n", + "3921 MX " + ] + }, + "execution_count": 157, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mexico_filter.head(77)" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "367" + ] + }, + "execution_count": 164, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(mexico_filter.Cases)" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3985 2019-12-31\n", + "3954 2020-01-31\n", + "3955 2020-01-30\n", + "3925 2020-02-29\n", + "3956 2020-01-29\n", + " ... \n", + "3952 2020-02-02\n", + "3983 2020-02-01\n", + "3924 2020-01-03\n", + "3953 2020-01-02\n", + "3984 2020-01-01\n", + "Name: DateRep, Length: 77, dtype: datetime64[ns]" + ] + }, + "execution_count": 163, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mexico.DateRep" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [], + "source": [ + "import sklearn\n", + "# Select a linear model\n", + "lin_reg_model = sklearn.linear_model.LinearRegression()\n", + "# Train the model\n" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "Expected 2D array, got 1D array instead:\narray=[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.\n 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.\n 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54.\n 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.\n 73. 74. 75. 76. 77.].\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m77\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m77\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmexico\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCases\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mlin_reg_model\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/lwc/topics/covid19/covid/lib/python3.7/site-packages/sklearn/linear_model/_base.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 490\u001b[0m \u001b[0mn_jobs_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 491\u001b[0m X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],\n\u001b[0;32m--> 492\u001b[0;31m y_numeric=True, multi_output=True)\n\u001b[0m\u001b[1;32m 493\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 494\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msample_weight\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/lwc/topics/covid19/covid/lib/python3.7/site-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_X_y\u001b[0;34m(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)\u001b[0m\n\u001b[1;32m 753\u001b[0m \u001b[0mensure_min_features\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mensure_min_features\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 754\u001b[0m \u001b[0mwarn_on_dtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mwarn_on_dtype\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 755\u001b[0;31m estimator=estimator)\n\u001b[0m\u001b[1;32m 756\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmulti_output\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 757\u001b[0m y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False,\n", + "\u001b[0;32m~/lwc/topics/covid19/covid/lib/python3.7/site-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)\u001b[0m\n\u001b[1;32m 554\u001b[0m \u001b[0;34m\"Reshape your data either using array.reshape(-1, 1) if \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 555\u001b[0m \u001b[0;34m\"your data has a single feature or array.reshape(1, -1) \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 556\u001b[0;31m \"if it contains a single sample.\".format(array))\n\u001b[0m\u001b[1;32m 557\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 558\u001b[0m \u001b[0;31m# in the future np.flexible dtypes will be handled like object dtypes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Expected 2D array, got 1D array instead:\narray=[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.\n 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.\n 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54.\n 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.\n 73. 74. 75. 76. 77.].\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample." + ] + } + ], + "source": [ + "X = np.linspace(1,77,77, axis=0)\n", + "y = mexico.Cases\n", + "lin_reg_model.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y.shape" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}