{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Reading data\n", "import os\n", "import git\n", "import shutil\n", "import tempfile\n", "\n", "# Create temporary dir\n", "t = tempfile.mkdtemp()\n", "d = 'lwc/topics/covid19/covid-model'\n", "# Clone into temporary dir\n", "git.Repo.clone_from('http://gmarx.jumpingcrab.com:8088/COVID-19/covid19-data.git', \n", " t, branch='master', depth=1)\n", "# Delete files\n", "#os.remove('README.txt')\n", "shutil.rmtree('data')\n", "#shutil.rmtree('secondTest')\n", "# Copy desired file from temporary dir\n", "shutil.move(os.path.join(t, 'data'), '.')\n", "# Remove temporary dir\n", "shutil.rmtree(t)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import os\n", "def loadData(path, file):\n", " csvPath=os.path.join(path, file)\n", " return pd.read_csv(csvPath)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountry/RegionProvince/StateLatLongConfirmedRecoveredDeaths
02020-01-22AfghanistanNaN33.065.000.00
12020-01-23AfghanistanNaN33.065.000.00
22020-01-24AfghanistanNaN33.065.000.00
32020-01-25AfghanistanNaN33.065.000.00
42020-01-26AfghanistanNaN33.065.000.00
\n", "
" ], "text/plain": [ " Date Country/Region Province/State Lat Long Confirmed Recovered \\\n", "0 2020-01-22 Afghanistan NaN 33.0 65.0 0 0.0 \n", "1 2020-01-23 Afghanistan NaN 33.0 65.0 0 0.0 \n", "2 2020-01-24 Afghanistan NaN 33.0 65.0 0 0.0 \n", "3 2020-01-25 Afghanistan NaN 33.0 65.0 0 0.0 \n", "4 2020-01-26 Afghanistan NaN 33.0 65.0 0 0.0 \n", "\n", " Deaths \n", "0 0 \n", "1 0 \n", "2 0 \n", "3 0 \n", "4 0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# import jtplot submodule from jupyterthemes\n", "from jupyterthemes import jtplot\n", "PATH=os.path.join(\"data\")\n", "covid_data=loadData(PATH,\"time-series-19-covid-combined.csv\")\n", "covid_data.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split \n", "train_set, test_set=train_test_split(covid_data,test_size=0.2,random_state=42)\n", "train_cp=train_set.copy()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[,\n", " ],\n", " [,\n", " ],\n", " [,\n", " ]],\n", " dtype=object)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZRdZZnv8e/PMIhhSGKwDAlSoLQaxMsQAZe0Ny02hOHecG2loVkSEEi3wmptWd0G8YqNU7AbRQQF1EhQmcSBiCAGpByuJpLYSBiMKTBIICFASEICLUSf+8f7luxUTg1n3qfq91lrr9rn3dNzdr3nPHu/+91nKyIwM7PR7SXtDsDMzNrPycDMzJwMzMzMycDMzHAyMDMznAzMzAwng44maSdJ35e0QdK3JJ0s6UdtjOcqSZ9o1/bNBiMpJL2m3XGUlZNBi0j6B0lLJG2StFrSrZIOr3O17wS6gJdHxLsi4psRcWQDwjVrOkkrJT0n6RlJ6yX9QtI/Sar7e0lSj6QzGhHnaOFk0AKSPghcDHyK9OX9KuCLwMw6V70X8LuI2DKMGLarc1tmzfC/ImIXUl2eC3wI+Gp7QxqdnAyaTNJuwAXAWRHxnYjYHBEvRMT3I+JfJe0o6WJJj+XhYkk75mWnS1ol6RxJa/MZxWl52r8DHwX+Pp9tnC7pVEk/L2w7JJ0laQWwolD2Pkkr8hHZxyW9Oh+VbZR0g6QdCus4TtLdhSO3NxamHSjp13k91wMvbcU+tZEnIjZExALg74FZkt6QPxv/KekPkh6XdLmknQAkjZd0s6QnJD2dx6fkaZ8E/hq4NH82Li1s6u257q+XdJkk5WVeI+knucn1yVyfR5eI8NDEAZgBbAG2G2D6BcAi4BXA7sAvgI/nadPzshcA2wPHAM8C4/P0jwHfKKzrVODnhdcBLAQmADsVym4CdgX2A/4I3AHsA+wG3A/MyvMeCKwFDgXGALOAlcCOwA7Aw8C/5NjeCbwAfKLd+9xDZwy5Lr29QvkfgPcCnwMW5Pq7C/B94NN5npcDfwe8LE/7FvC9wjp6gDP6rTeAm4FxpLPzJ4AZedq1wHmkA+SXAoe3e/+0evCZQfO9HHgyBm7KORm4ICLWRsQTwL8D7y5MfyFPfyEibgE2Aa+tYvufjoh1EfFcoewzEbExIu4D7gV+FBEPRcQG4FZSEgCYDVwREYsj4k8RMZ+UPA7Lw/bAxTm2G4G7qojLbCCPkRLAbOBfcv19htTMeiJARDwVEd+OiGfztE8C/3MY654bEesj4g/AncABufwFUlPVHhHx3xHx8wHXMEI5GTTfU8DEQdrs9yAdYfd5OJf9Zfl+ieRZYOcqtv9IhbLHC+PPVXjdt/69gHPyKfV6SeuBPXN8ewCPRj6sKsRuVq/JwHako/6lhbr3Q9LZM5JeJukKSQ9L2gj8FBgnacwQ615TGC9+lv4NEPArSfdJek8D309HcDJovl+SjqaPH2D6Y6Qv3T6vymWNUs/P0j4CfDIixhWGl0XEtcBqYHJfm2v2qroitVFP0ptIyeB7pAOT/Qp1b7eI6PvyPod0hnxoROwKvLVvFflvVfU+ItZExJkRsQfwj8AXR1s3VCeDJstNLx8FLpN0fD6i2V7S0ZI+Q2qr/Iik3SVNzPN+o50xF3wZ+CdJhyoZK+lYSbuQktwW4J/z+3kHcEhbo7WOJWlXSccB15Gug/2GVP8+J+kVeZ7Jko7Ki+xCShbrJU0Azu+3ysdJ18GGu/139V2ABp4mJZM/1/yGOpCTQQtExEXAB4GPkC5aPQKcTTr6+QSwBLgHWAb8Ope1XUQsAc4ELiV9QHpJF6mJiOeBd+TX60i9QL7Tjjito31f0jOkz8R5wGeB0/K0D5Hq3KLcFHQ7L14vuxjYCXiS1AHjh/3W+3ngnbmn0SXDiONNwGJJm0gXrd8fEQ/V/rY6j7Zu8jUzs9HIZwZmZuZkYGZmTgZmZoaTgZmZkW7s6EgTJ06M7u7ubco3b97M2LFjWx/QEMoaF5Q3tmbHtXTp0icjYvembaDBOq3Og2OrVbNiG7TOt/v3MGodDj744KjkzjvvrFjebmWNK6K8sTU7LmBJlKAuD3fotDof4dhq1azYBqvzbiYyM7PObSYayLJHN3DqnB9UtczKucc2KRqz5qulzoPrvW3NZwZmZuZkYGZmTgZmZoaTgZmZ4WRgZmY4GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZsYwkoGkeZLWSrq3UDZB0kJJK/Lf8blcki6R1CvpHkkHFZaZledfIWlWofxgScvyMpdIUqPfpJmZDW44ZwZXATP6lc0B7oiIfYE78muAo4F98zAb+BKk5AGcDxwKHAKc35dA8jxnFpbrvy2zlvNBkI02QyaDiPgpsK5f8Uxgfh6fDxxfKL86P25zETBO0iTgKGBhRKyLiKeBhcCMPG3XiFiUn895dWFdZu10FT4IslGk1msGXRGxOo+vAbry+GTgkcJ8q3LZYOWrKpSbtZUPgmy0qfsZyBERkqIRwQxF0mzSkRddXV309PRsM0/XTnDO/luqWm+l9TTapk2bWrKdWpQ1thLG1fKDoGbVeXC9d2xbqzUZPC5pUkSszkc5a3P5o8Cehfmm5LJHgen9ynty+ZQK81cUEVcCVwJMmzYtpk+fvs08X/jmTVy0rLq3tfLkbdfTaD09PVSKtwzKGltZ44LWHQQ1q86D671j21qtzUQLgL6LYbOAmwrlp+QLaocBG/KR1G3AkZLG5zbTI4Hb8rSNkg7LF9BOKazLrGwezwc/VHEQNFD5sA+CzFphOF1LrwV+CbxW0ipJpwNzgb+VtAJ4e34NcAvwENALfBl4H0BErAM+DtyVhwtyGXmer+RlHgRubcxbM2s4HwTZiDXkuWVEnDTApCMqzBvAWQOsZx4wr0L5EuANQ8Vh1kr5IGg6MFHSKlKvoLnADfmA6GHghDz7LcAxpAOaZ4HTIB0ESeo7CIJtD4KuAnYiHQD5IMjaqu4LyGYjkQ+CbLTxz1GYmZmTgZmZORmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZoaTgZmZ4WRgZmY4GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZoaTgZmZ4WRgZmY4GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZlRomQgaYak5ZJ6Jc1pdzxmzeY6b2VSimQgaQxwGXA0MBU4SdLU9kZl1jyu81Y2pUgGwCFAb0Q8FBHPA9cBM9sck1kzuc5bqWzX7gCyycAjhdergEP7zyRpNjA7v9wkaXmFdU0Enqxm47qwmrlrVnVcLVTW2Jod115NXPdQ2lrnwfWe0RnbgHW+LMlgWCLiSuDKweaRtCQiprUopGEra1xQ3tjKGlcrdXKdB8dWq3bEVpZmokeBPQuvp+Qys5HKdd5KpSzJ4C5gX0l7S9oBOBFY0OaYzJrJdd5KpRTJICK2AGcDtwEPADdExH01rm7QU+o2amhcklZKenuVy/RIOqPCpFGxz8pklNR5qDG2Wup3DUbcfquHIqLV27QGkLQSOCMibq9imR7gGxHxlWbFZdYItdRvq08pzgysMSSNl3SzpCckPZ3Hp+RpnwT+GrhU0iZJl7Y3WrPqSToz36S3TtICSXsUpoWkf5K0QtJ6SZdJUp42RtJFkp6U9HtJZ+f5O6oTTTM5GYwsLwG+Ruo+9irgOeBSgIg4D/gZcHZE7BwRZ7ctSrMaSHob8GngBGAS8DDp/oyi44A3AW/M8x2Vy88k3eB3AHAQcHwLQu4oIyoZtOL2fkl7SrpT0v2S7pP0/lw+QdLCfFSyUNL4XC5Jl+SY7pF0UGFds/L8KyTNKpQfLGlZXuaSvqOboUTEU8D3gP8HXAt8EvgbSYsl9ZLudB2Tt7GjpOvzNhZL6i5s/9xcvlzSUYXymvavpHGSbpT0W0kPSHpzGfbXSNCKOt9ve02v/4M4GZgXEb+OiD8C5wJvLtZdYC7wDHAT8AJwgKS9gQtJffcvAjbn+QCuqeYzUI9mfw7qFhEjYiB9yT0I7APsAPwGmNqE7UwCDsrjuwC/I33JfgaYk8vnABfm8WOAWwEBhwGLc/kE4KH8d3weH5+n/SrPq7zs0RXiWAm8vV/Zy4BfkCr7C8BGIICT8vTHgK/n8fcBl+fxE4Hr8/jUvO92BPbO+3RMPfsXmE9q/yUvO67V+2skDq2q862u/4PU71uBs/qVrQHekscDeA3wQeAa0k19nwBuIHXbPQa4HHgv8No8/xXD/Qw0YN819XNQ7zCSzgxacnt/RKyOiF/n8WdIPUEm523Nz7PN58XT0JnA1ZEsAsZJmkQ6fV0YEesi4mlgITAjT9s1IhZF+u9fzfBPaf8deD1wCqmXyltz+Xfy39XAgYW4+uK9ETgiH1HPBK6LiD9GxO+BXtK+rWn/Stotx/FVgIh4PiLWl2R/dbqW/6RFs+v/EJt/jMIdtJLGAi9n6/szXgkcCxQ7SbwNWEG6l6Mvtr57PL6e/w7nM1CzZn8O6omtz0hKBpVu75/czA3m08oDgcVAV0SszpPWAF1DxDVY+aoK5ZVsL+mlfQOpAt1POk3entRMBPCnwrq2iStSN8cNpA9WtfEOZW/gCeBrkv5L0lfyh7gd+2ukaXmdL2pS/S/qX7+vBU6TdICkHYFPkY6YVxaWOQ/4N+DP+fVOwHrgeuD9pDPmPYEP5enVfAbq0ezPQd1GUjJoKUk7A98GPhARG4vT8hFqK/rs3kK6SNw3/IlU2W8C3gLc0W/+ecCukp4mne63wnakC3ZfiogDSU1YW7Vtt3B/WYO0qP73r9/Tgf+bt7saeDWpeafoqYhYWmFdXwZ+RDqSfk1eN7x4oNRspf8cjKRk0LLb+yVtT6qQ34yIviaYx/NpHPnv2iHiGqx8SoXyrUREd0SobyBdENsF6CYd4bwEOBh4qrDYWqAnIsYDS/q2r9S9brc8b7XxDmUVsCoiFufXN5I+FC3dXyNUW37Sosn1H9i2fufhIxFxeUS8OiImRMRxEVE8K5wLTFe6R+E60lH+K0lt80TEv5Da4u8Efgv8N9V9BurR7M9B/Rpx4aEMAynzPkQ6Heu7mLZfE7YjUrv0xf3K/4OtLwR9Jo8fy9YXgn4VL14I+j3pItD4PD4hT+t/QfSYKmOcDtycx78FnJjHLwfel8fPYusLyDfk8f3Y+uLZQ6QLlTXvX1KX1tfm8Y/lfVWa/dWpQ6vqfKvrf4Pi7P8ZeDcpEVxB6oW0CPhxNZ+BBsTU1M9B3fG1u0I3uKIeQ+rd8CBwXpO2cTjpVO4e4O48HEM6CrmDdKHq9sIXlUgPMXkQWAZMK6zrPaSLU73AaYXyacC9eZlLyXeK1/hB2Cd/WfbmD8WOufyl+XVvnr5PYfnz8raXU+iZU+v+JfXtXpL32fdyJS7N/urkoRV1vtX1v0Fx9v8MLCGdCbxAOvr+GrB7tZ+BOmNq6ueg3sE/R2FmZiPqmoGZmdWoY3+XY+LEidHd3d3uMJpi8+bNjB07tt1hNF273+fSpUufjIjd2xZAlRpR59u9z6vVSfF2QqyD1fmOTQbd3d0sWbKk3WE0RU9PD9OnT293GE3X7vcp6eG2bbwGjajz7d7n1eqkeDsh1sHqvJuJzMysc88MrDy65/yg6mVWzj22CZHYSNFXp87ZfwunVlG/XK9q5zMDMzNzMjAzMycDMzPDycDMzHAyMDMz3JtoxKqlhw+4N4bZaOVk0AFq/WIv+7bMrDzcTGRmZk4GZmbmZGBmZjgZmJkZTgZmZoaTgZmZUUcykLSnpDsl3S/pPknvz+UTJC2UtCL/HZ/LJekSSb2S7pF0UGFds/L8KyTNqv9tmZlZNeo5M9gCnBMRU4HDgLMkTQXmAHdExL6kBz3PyfMfDeybh9nAlyAlD+B84FDgEOD8vgRiZmatUXMyiIjVEfHrPP4M8AAwGZgJzM+zzQeOz+MzgasjWQSMkzQJOApYGBHrIuJpYCEwo9a4zMyseg25A1lSN3AgsBjoiojVedIaoCuPTwYeKSy2KpcNVF5pO7NJZxV0dXXR09PTiPBLZ9OmTVu9t3P239K+YJqkp6dnm/dpZu1TdzKQtDPwbeADEbFR0l+mRURIinq3UVjflcCVANOmTYuyP2+0Vv2fpVrNk546xcqTp3fEM2PNRou6koGk7UmJ4JsR8Z1c/LikSRGxOjcDrc3ljwJ7FhafksseBab3K++pJy4zG538CNba1dObSMBXgQci4rOFSQuAvh5Bs4CbCuWn5F5FhwEbcnPSbcCRksbnC8dH5jIzM2uRes4M3gK8G1gm6e5c9mFgLnCDpNOBh4ET8rRbgGOAXuBZ4DSAiFgn6ePAXXm+CyJiXR1xmZk1VaUzkHP23zJok27Zz0BqTgYR8XNAA0w+osL8AZw1wLrmAfNqjcXMzOrjO5DNhsk3WtpI5mRgNny+0dJGLCcDs2HyjZY2kvmxl2Y16NQbLTvlRr++Gy27dmr+TZe17I9KMQ0Va9n3u5OBWZU6+UbLTrnRr69Xzjn7b+GiZc39mlp58vSql6nUa2ioWGvZTis5GVhbdM/5wZBd8forQ9c832hpI5WTgdkwDeNGy7lse6Pl2ZKuI10s3pATxm3ApwoXjY8Ezm3Feyjy3bpW5GRgNny+0dJGLCcDs2HyjZY2krlrqZmZORmYmVn9P2E9DzgOWBsRb8hlE4DrgW5gJXBCRDydL759ntSG+ixwat8NPPl2/I/k1X4iIuYzQg3nol21vWzMzOpV75nBVWx756RvzTcz6zB1JYOI+CnQvxeEb803M+swzehN1DG35rfDcG6tb8Ut+GVQ7fvsxP+3WadoatfSst+a3w7DuRbQilvwy6Da91n22/lHA9+oNnI1ozfR47n5hypuza9UbmZmLdKMw8+OvDXfzKyZajmrgtadWdXbtfRa0g9uTZS0itQryLfmm5l1mLqSQUScNMCkUXFrfq2Z3sysbEbcVUpf4DIrFx80dQb/HIWZmTkZmJmZk4GZmTECrxnUwm2aZjbaORmY2ajmg8HEzURmZuYzA+scZb+Ds12q2S9+VkbnaVV3eZ8ZmJmZk4GZmTkZmJkZJUoGkmZIWi6pV9KcoZcw62yu81YmpUgGksYAl5GekzwVOEnS1PZGZdY8rvNWNqVIBsAhQG9EPBQRzwPXkZ6ZbDZSuc5bqZSla2ml5yAf2n+m4jOQgU2Slrcgtpb7Z5gIPNnuOJqtVe9TFw44aa9mb3sQbanznVa3OineMsVaS50vSzIYluIzkEcySUsiYlq742i20fI+69HoOt9p+7yT4u2kWCspSzORn4Nso43rvJVKWZLBXcC+kvaWtANwIumZydZBJJ0q6eftjqNDuM5bqZQiGUTEFuBs4DbgAeCGiLivvVE1hqSVkp6TtEnSGklXSdp5iMVGfFNYNlre5zbaWOc7bZ93UrydFOs2lB5NbM0iaSVwRkTcLumVpA//zRFxXnsjG5yk7fIXVjXLnEp6r4c3Jyoza5ZSnBmMFhGxhpQMDgCQtKOk/5T0B0mPS7pc0k5980uaKeluSRslPShpRi7fQ9ICSevyDUtnFsqfkzShsI4DJT0pafv8+j2SHpD0tKTbJO1VmDcknSVpBbAil71O0sK8reWSTijM//Icx0ZJvwJe3cz9Z2bN42TQQpKmkG4y6s1Fc4G/IiWH15C6G340z3sIcDXwr8A44K3AyrzcdaSuiHsA7wQ+JeltEfEY8Evg7wqb/Qfgxoh4QdJM4MPAO4DdgZ8B1/YL83hSF8epksYCC4FrgFeQ2rW/WLg56jLgv4FJwHvyYGadKCI8NHEgfYFvAp4BAriD9OUuYDPw6sK8HwCeJyWLxcDnKqxvT+BPwC6Fsk8DV+XxM4Af53GR+rK/Nb++FTi9sNxLgGeBvfLrAN5WmP73wM/6bf8K4HxgDPAC8LrCtE8BPx9iXywD7gaW5LIJpISzIv8d3+7/2UgYgHcB9wF/Bqb1m3ZurmPLgaMK5TNyWS8wp83xlyaWQkzzgLXAvYWyivU3f/YuyfHfAxzU7viHGnxm0BrHR8QuwHTgdaSbU3YHXgYslbRe0nrgItIX7FTg9aRk0d8ewLqIeKZQ9jDprALg28CbJU0inU38mXQGAOmGk88XtreOVGknF9ZVvBFqL+DQvvnzMicDr8zxb9dv/oeHsS/+JiIOiBf7Y88B7oiIfUmJ0r/R0xj3ks4Af1oszGd1JwL7kb5wvyhpTJl+HqNMsfRzFWmfFQ1Uf48G9s3DbOBLLYqxZk4GLRQRPyFVqP8k3an4HLBfRIwjVZ7bI2JspJ8neICUPPp7DJggaZdC2avIfdQj4mngR6Sj+n8Arot8qEL64v7HiBhXGHaKiF8UwyyMPwL8pN/8O0fEe4EngC1s3Vf+VdXuE9JPMMzP4/NJzVRWp4h4ICIq3a08k1Qn/hgRvycduR5CuX4eo0yx/EVE/JR0AFU0UP2dCVwdySJgXD5AKy0ng9a7GPhbYH/gy8DnJL2CdHT+lKSj8ny3AG+SdISkl0iaLOl1EfEI8Avg05JeKumNwOnANwrbuAY4hXQ94ZpC+eXAuZL2A5C0m6R3DRLrzcBfSXq3pO3z8CZJr4+IPwHfAT4m6WX5yG3WEO89gB9JWpp/ZgGgKyJW5/E1QNcQ67D6VPoZjMmDlLdDmWIZykD1t5PeA+Bk0HIR8QTpwvBHgQ+RjswW5bKjgdfmWR8inXZ+DtgA/IQXf1fkJKCbdJbwXeD8iLi9sJkFpNPTNRHxm8K2vwtcCFwnaSOpKeHoQWJ9BjiS1KzwGKmyXwjsmGc5G9g5l18FfG2It394RByUt3mWpLf2216w9ZmJDULS7ZLurTC0/Sh6NOr0+ttRv03UiSKiu0LZewsvPwx8WNKbgY9FxCW5fArp4u2nKyy/CjhukG0+B+wywLSvA18fYJoqlC0HKj5QNSe2AeOoMH9fU9ZaSd8lNQc8LmlSRKzOp9Frh7u+0S4i3l7DYoP9DEZZfh6jk36qY6D620nvAfCZQZmM6J8nkDS27zpH7rJ6JOnMZAEvNi/NAm5qT4SjxgLgxHyPy96kM8hfUa76V6ZYhjJQ/V0AnKLkMGBDoTmplHxmUBIRsUVS388TjAHmxQj5SY6sC/iuJEj17pqI+KGku4AbJJ1O6o10wiDrsGGS9H+AL5B6ff1A0t0RcVRE3CfpBuB+UgeAs/L1H8pS/8r6WZB0LalTx0RJq0hdrOdSuf7eAhxDagZ+Fjit5QFXyT9HYWZmbiYyM7MObiaaOHFidHd3b1O+efNmxo4d2/qAatRp8ULnxTxQvEuXLn0yInZvQ0hmpdOxyaC7u5slS5ZsU97T08P06dNbH1CNOi1e6LyYB4pX0nDumDYbFdxMZGZmnXtmMJBlj27g1Dk/qGqZlXMrdqM3Mxs1fGZgZmZOBmZm5mRgZmY4GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZsYwkoGkeZLWSrq3UDZB0kJJK/Lf8blcki6R1CvpHkkHFZaZledfIWlWofxgScvyMpcoPyTXzMxaZzhnBlcBM/qVzQHuiIh9gTvya4CjgX3zMBv4EqTkQXp49KHAIcD5fQkkz3NmYbn+2zIzsyYbMhlExE+Bdf2KZwLz8/h84PhC+dWRLALGSZoEHAUsjIh1EfE0sBCYkaftGhGLIiKAqwvrMjOzFqn14TZdEbE6j68BuvL4ZOCRwnyrctlg5asqlFckaTbpjIOuri56enq2DWwnOGf/LVW8FSqup1U2bdrU1u3XotNi7rR4zdqh7iedRURIikYEM4xtXQlcCTBt2rSo9FzbL3zzJi5aVt3bWnnytutplU57njB0XsydFq9ZO9Tam+jx3MRD/rs2lz8K7FmYb0ouG6x8SoVyMzNroVqTwQKgr0fQLOCmQvkpuVfRYcCG3Jx0G3CkpPH5wvGRwG152kZJh+VeRKcU1mVmZi0yZHuKpGuB6cBESatIvYLmAjdIOh14GDghz34LcAzQCzwLnAYQEeskfRy4K893QUT0XZR+H6nH0k7ArXkwM7MWGjIZRMRJA0w6osK8AZw1wHrmAfMqlC8B3jBUHGZm1jy+A9nMzJwMzMzMycDMzHAyMDMznAzMzAwnAzMzw8nAzMxwMjAzM5wMzMwMJwMzM8PJwMzMqDMZSFqZn198t6Qluaxhz0c2M7PWaMSZwd9ExAERMS2/buTzkc3MrAWa0UzUkOcjNyEuMzMbQL2PvQzgR/mxl1fkx1I26vnI2/AzkMuh02LutHjN2qHeZHB4RDwq6RXAQkm/LU5s9POR/Qzkcui0mDstXrN2qKuZKCIezX/XAt8ltfk36vnIZmbWIjUnA0ljJe3SN056rvG9NOj5yLXGZWZm1aunmagL+G56jj3bAddExA8l3UXjno9sZmYtUHMyiIiHgP9RofwpGvR8ZDMzaw3fgWxmZk4GZmbmZGBmZjgZmJkZTgZmZoaTgZmZ4WRgZmY4GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRklSgaSZkhaLqlX0pyhlzAzs0YpRTKQNAa4DDgamAqcJGlqe6MyMxs9SpEMSE9I642IhyLieeA6YGabYzIzGzXqfQZyo0wGHim8XgUc2n8mSbOB2fnlJknLK6xrIvBkNRvXhdXM3XBVx1sCnRbzQPHu1epAzMqqLMlgWCLiSuDKweaRtCQiprUopLp1WrzQeTF3Wrxm7VCWZqJHgT0Lr6fkMjMza4GyJIO7gH0l7S1pB+BEYEGbYzIzGzVK0UwUEVsknQ3cBowB5kXEfTWubtBmpBLqtHih82LutHjNWk7pOfVmZjaalaWZyMzM2sjJwMzMRlYyaNdPWkjaU9Kdku6XdJ+k9+fyCZIWSlqR/47P5ZJ0SY7zHkkHFdY1K8+/QtKsQvnBkpblZS6RpAbEPUbSf0m6Ob/eW9LivI3r88V8JO2YX/fm6d2FdZyby5dLOqpQ3vD/haRxkm6U9FtJD0h6c9n3sVnHiIgRMZAuPD8I7APsAPwGmNqibU8CDsrjuwC/I/2sxraIzJUAAALbSURBVGeAObl8DnBhHj8GuBUQcBiwOJdPAB7Kf8fn8fF52q/yvMrLHt2AuD8IXAPcnF/fAJyYxy8H3pvH3wdcnsdPBK7P41Pzft4R2Dvv/zHN+l8A84Ez8vgOwLiy72MPHjplGElnBm37SYuIWB0Rv87jzwAPkO6qnkn6AiP/PT6PzwSujmQRME7SJOAoYGFErIuIp4GFwIw8bdeIWBQRAVxdWFdNJE0BjgW+kl8LeBtw4wDx9r2PG4Ej8vwzgesi4o8R8Xugl/R/aPj/QtJuwFuBrwJExPMRsZ4S72OzTjKSkkGln7SY3OogchPKgcBioCsiVudJa4CuPD5QrIOVr6pQXo+LgX8D/pxfvxxYHxFbKmzjL3Hl6Rvy/NW+j3rsDTwBfC03bX1F0ljKvY/NOsZISgZtJ2ln4NvAByJiY3FaPtosRT9eSccBayNiabtjqcJ2wEHAlyLiQGAzqVnoL8q0j806zUhKBm39SQtJ25MSwTcj4ju5+PHc/ED+u3aIWAcrn1KhvFZvAf63pJWkJpy3AZ8nNaX03YhY3MZf4srTdwOequF91GMVsCoiFufXN5KSQ1n3sVlHGUnJoG0/aZHbz78KPBARny1MWgD09VaZBdxUKD8l93g5DNiQmzpuA46UND73ijkSuC1P2yjpsLytUwrrqlpEnBsRUyKim7SffhwRJwN3Au8cIN6+9/HOPH/k8hNzb6O9gX1JF2Eb/r+IiDXAI5Jem4uOAO6npPvYrOO0+wp2IwdSD5LfkXqynNfC7R5Oap64B7g7D8eQ2tXvAFYAtwMT8vwiPcznQWAZMK2wrveQLsT2AqcVyqcB9+ZlLiXfPd6A2KfzYm+ifUhf5r3At4Adc/lL8+vePH2fwvLn5ZiWU+h904z/BXAAsCTv5++RegOVfh978NAJg3+OwszMRlQzkZmZ1cjJwMzMnAzMzMzJwMzMcDIwMzOcDMzMDCcDMzMD/j+vRSRqFLhmwQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "covid_data.hist()\n" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(63, 8)" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%matplotlib inline \n", "import matplotlib.pyplot as plt \n", "covid_mexico = covid_data[covid_data['Country/Region']=='Mexico']\n", "covid_mexico.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 134, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 134, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAcJUlEQVR4nO3dfaxlVXnH8e+jFI31BZDbCTKMQy011foGt0SLsVbwDUwHW2tIjOJLMm2qRqMWBk1am7bJqK1WbWuCqB0rFvGtThGr0trW1IDcoai8SBxxRmYywCCKWhIt+vSPsy8c7jn7nP2+Xvbvk9zM3H3OPWftfc5ez15rPWttc3dERESmPSB0AUREJD4KDiIiMkPBQUREZig4iIjIDAUHERGZcUToAnTh2GOP9a1bt4YuhohIUvbs2XOHu6/MeyyL4LB161bW1tZCF0NEJClmtr/sMXUriYjIDAUHERGZoeAgIiIzFBxERGSGgoOIiMzIIltJwtq647P3/n/fzrMClkREuqKWg7QyHRjm/S4iaVJwkMbKAoEChEj6FBxERGSGgoOIiMxQcJDGygafNSgtkj4FB2llYyBQYBDJg1JZpTUFBJH8qOUgIiIzFBxERGSGgoOIiMxQcBARkRkakJboae0mkeGp5SBR09pNImEoOEi0Ul67aeuOz977I5IiBQeRGqpU+mrtSA4UHEQqqlLpp9zaEZmm4CDRarp2Ux9dOqr0ZWwUHCRqddduUpeOSDcUHCR6+3aede/PIjFc3WulWsmFgoPIlLIuqTqVvlaqlRwEnQRnZkcBFwG/DjjwSuAm4GPAVmAf8GJ3/36gIsqIzOuSmq7Y9+08q/KEPAUETV5Mnbl7uDc32wV82d0vMrMjgYcAbwbudPedZrYDONrdz1/0Oqurq762tjZAiSV287qQqlRMi7qeVLHV1/RzkGGZ2R53X533WLBuJTN7BPAM4AMA7v5Td/8BsA3YVTxtF3B2mBJKimLo0hn7BLgYxn6kvZDdSicCh4EPmdmTgD3A64BN7n6oeM6twKZ5f2xm24HtAFu2bOm/tJKMkFeoy7qmRFIRckD6COBk4H3u/hTgf4Ed00/wSZ/X3H4vd7/Q3VfdfXVlZaX3wkreusgy0hWz5CRkcDgAHHD3q4rfP8EkWNxmZscBFP/eHqh8MjIxdEnlQOm8eQgWHNz9VuAWM3tssel04AZgN3Buse1c4DMBiicjNV2B6Yq/OQXa9IW+n8NrgYuLTKWbgVcwCViXmtmrgP3AiwOWT0ZGYwbd0XFLW9Dg4O7XAvPSqE4fuiySpzq59ovGDFTRydhohrRkS+ssiTSn4FBi7LnqqRs6c0iT6CQ3Cg5zdHnFqSCTjr6ybPT5S4qCLp/RlS6Xz6h7BbioT3vIJQTarmOTyzo4VSrhOmMPVY9F1co/5WMr+Vm0fIaCwwZ1gsOiyn/Iboa2QSiXdXCaBoauAqMChKQmyrWVUhfLbNi25YhlP9pqWt42XYgbuwxV6UtOFBw2iGV2p8Yqulel5be+fdmxLwsqVW5KJJICBYc5upjd2SbIKAWze00r7HnHvkprK5aLDJGmNObQQpW++rr92U3GKjTmMFF3P+oE3Y03+ln0vLL3SPGYSt40IF2iixO365O/6UC2spUm5u3Hsm1dSvnYyfgoOMwR69WyJlN1q+xz7iM46POR1Cg4bBB7BRxr4EpNiLGaPlt3Il1TKmtitNxx/6oe07rHvmpqcAxJBmPNiBvrftel4BCp9ZRIBYb+9BUgNopxLkmMwWoIY93vJkbZrQTj6ropOwFy3d9pVT/nZV2NdTObqrxuWVn6llK3apfliX2/Q1C30hxj6bqpM5ErR2Wfc53ZzXWPk7otmtOVfTxC3wkuqFwDwroqJ9YYbmSzbGZ0qAoo9+Nel262FJfRthxknGK5Eg1Z2Y119vZY97spBQeRgcVQGeXQrdqk+y6H/R7KaAekxyLGAdGQQrccxna862qTQNDHfTpypwHpEdNJcH8hjofSkqurcmXfJDU4lnGmlIx6QFpE4jPEzbDWtytgl1PLYQQ0EHefEFeMbd5TabESioLDSGggLq4ZyU3+pqvypx5w6lzspLqPMdCAtIxG6Iqi7T02mrxOldetcp+QGAd7l72nkjGWi3pA2sweaGb/Y2aXFb+faGZXmdleM/uYmR0ZuoySv5QqiqZX/XUGcuu0WkIN9k4P8m88JgoM7QUPDsDrgBunfn8b8C53/xXg+8CrgpRKsjDdhbKsO6JqVlGXt41to69KuE0QWba9a00CkwJDNUGDg5ltBs4CLip+N+BZwCeKp+wCzg5TOknRdDCYV3FUHXvpchB/UbdNWSug6vuE7ioLKXRgyl3olsPfAOcBPy9+fyTwA3e/p/j9AHB8iIJJeuqsJdWkhVAnMCx7jxBdMWPKWhvTvvYlWHAwsxcAt7v7noZ/v93M1sxs7fDhwx2XTlLT5z2h51XydQZoqz4WIkDM2486FWtXlXDXGVR1WokyX8hJcKcBv2NmZwIPBh4OvBs4ysyOKFoPm4GD8/7Y3S8ELoRJtlLTQmhKvTTV172o65ahj7/ZuG+L/qbOc+cp6/4re802aylJdcGCg7tfAFwAYGbPBN7k7i8xs48DLwIuAc4FPtNXGar0Sff1fvrShpHScV8WfPrel7rdaE1UbUXNCxjSr9BjDvOcD7zBzPYyGYP4QB9vMnTTXmu79Kvq1fBQ77vsSrvq9nldI2Ndp0kthmGNdhLckFdkuj3hcPq6JWqdCVdNMo3G9D0Ych7EsvevegfAXD+fqCfBiQyh7fpGy16r7hX9GCqeeYZsMbeZ3KeW/oiDg1LdpIo+uh/LKp7U1zxapup+9XUOtg0EuX4uZUYbHGC4xegUiNLSZyWtK9X5Nra8dG6EN+rgAMMN8CnnehhtA3FMlXJMZQmh7Tmic6yd0Q5IS97aDhAv03XqZp/vuawcQ1aidZcKaRsgN7521fdvs6RJShYNSCs4jMRYB0DrGKpPPHSACF3x1f0u9hkglK2k4DBqoSuDoTU9qWNJb16maWW37H272sc+KtWuA4RMKJV1xMaWedFmYHfIxIG+Ks3Qn2tf5Rnz5L9QFBwkG10EwqESB7q4gu868LfN0OqiPMsyxdrsm9Sj4CCyQd9XqcsqqkVrfA2RwROqIu17/ocCRD0KDpnTHIt0zWvFdFFRxhggxtb9mQIFhxEYyxyLHAPhdCumy2yqPlpGOR7/MVNwGImxDOilEAiXlalq3n2T1+7DdGsmxPGv+h4xfhdiplRWGaUYctjrpBj3mYLaJtV50d8OMZ+haotKgWE+zXMQmZLivI++5yf0PaO86utuLEeXqbAyS8FBpJDyvTViC2pNr/T7fo8u3ncsFgWHkPeQFklSqBv7zLuSXv89x8pPgSEsDUiL1NBkBnCXs4bLkgpCpHz2WekqMISn4JCo3G8M05c26ZZNcvGHuFlQF6/Z1LzspCbHWN/n+Cg4JCi29XRSk0K6a1OhAsTGoFDnGPexHpa0pzGHjvWdIrnoqlEnSnUpHasY0m770vegts6L5tRy6JCu6PPWpLuk6zvTVansYvjedXEuLJrzsWji3bKySDUKDh2JqR9Y+tOkS6ppN1abVmLI793Q50LsxyNV6lZKSMo5+jlpcqz7uidE6pVe2T40mQ+Rw/GIiVoOiVBgkFzlnCCQMs2Q7lBfM1gVGMKIYSC4yndqqO9HnePR5blQN3sptpnkMYvyNqFmdoKZfcnMbjCz683sdcX2Y8zsi2b2reLfo0OVsS5dAeUjluSCKt+pOmmiTdU9Hl2eC3X/VudhN4K1HMzsOOA4d7/GzB4G7AHOBl4O3OnuO81sB3C0u5+/6LViaTn0RS2HYaV6vPsqd2wtk1Q/nxhF2XJw90Pufk3x/x8BNwLHA9uAXcXTdjEJGKNWNR1Ss0wlVVVaJsu+2woM3YpiQNrMtgJPAa4CNrn7oeKhW4FNgYoVjSb9zgoSkooqqa91u7GkveAD0mb2UOA/gb9090+Z2Q/c/aipx7/v7jPjDma2HdgOsGXLllP2798/WJmH1EUFP33ixDDImoJUBzWHTIro6ngsaw2otdCfKLuVAMzsF4BPAhe7+6eKzbcV4xHr4xK3z/tbd7/Q3VfdfXVlZWWYAidq/eSKZZA1ZmUtrlQqob4GYzXIOz4hB6SNyZjCne7++qnt7wC+NzUgfYy7n7fotXIekB6iAteJPpFyUEhd1duNlj1HmmndcjCz06psq+k04KXAs8zs2uLnTGAn8Gwz+xZwRvH7aI3xyx9iYF3Ln4S1qGXSdn0qaaZSy8HMrnH3k5dtCyX1lkOVcYC2N4hJZUAv1NW7rk7jpRZdfxrfQ9rMngb8JvB64F1TDz0ceKG7P6nLgjaVcnBoUmkvO1nKgk3sASJkBd3kvfsY3B9rwkCd7+yYjkvf2nQrHQk8lMkCfQ+b+vkh8KIuCzlGTW4xCcsHB+fdfCUnfXQ71e266GNwf6wJA2X7ra6+sKp2Kz3a3aPNFU215RDijlcxd59UKVvfV5Jtu/j6WD8o9OfSp6YVfc7HZEiLWg5Vl+y+u8giejzw4PWN7v6sDsonAixfNG2Iu+Cp0hGZqDrP4WLgm8CJwJ8B+4CreyrTaMRWEcXQXM81n15Lm9TXxV30dMybq9qttMfdTzGzr7v7E4ttV7v7b/RewgpS7VaC6hVy3fvmlv1tlfeLsUJuO5je9UBvne6tqs8d6+Br0wSLNq8pE13MkP6/4t9DZnaWmT0FOKaT0kklVYNI2YJlOat7b4GulyRZVIY6g6plAWNsn9969+L6T90ECw1kd6NqcPgLM3sE8EbgTcBFTNJbpaW+BlPrPJazPiuKPrLCyl4v989v+liONWsrNpWCg7tf5u53uft17v7b7n4K8JieyzYaMTV3YyrLtDHNkh3zle+Y9z02bRbee0NnpZClV6FDVIKxV7SLunJiHXwcU1CLhY55N9oEB+usFHI/TbsVFn35czkx5gXRRd0Qy+4oFmJhw1w+i5jpmLfXeFVWM/uuu2/puDyNpJytNE/bCVFNs5VSPIGq7k+dbKfQS1iUlTXFz6cJZRoNp3G2kpn9yMx+OOfnR8CjeimtLFS1BZH7Ehp1LTsWsdzzYuyBAXTVH4vgd4LrwphaDuvanDA5XZnVOVZtV7btW26tOolftHeCk/madB21ef2UK56qxyq2gerUxZoAIN1RcIhU1/MfNp7IOXU7dbEPbVtiY6ooQ3e9yTAUHCLWxzIPOZ7Ibfdp/Tg3SYHs8vimkIKpeQjjoeAQuTYVxhhO5K4CQ9Xfq7x3X11+Y2uhSFhVl+yWgDYuKTD0/QtyFeuVepV5Ll0uUy4yj4JDIqpewbZZvTXXCmdetlJK+znEfSyqWnbPjaGl+pmmQKmsiauz3PH04yHuQteXviqrpneF6/p4xZjiGkOlHFOQSpVSWTNVpc+7i7TV2Pu4+0jNrTrQnFNa8LRl4xuhs93GMJ4WmloOCWtzRdnkJMql4lsm9iv1dX2VJYUr8hg/oxSp5SAzdAKlZagWSgpX5DGVJWcakE5Y28HBumMPEtZYAvqibtE6CyhKO2o5JK7tFWXVfmOddN2NZWiuQrk2kwr1He1WtMHBzJ5nZjeZ2V4z2xG6PDHrYnBwDPeCgOWVc5+Vdgqz1UPO/UihS2tMouxWMrMHAn8HPBs4AFxtZrvd/YawJctbTkFgnpDzOpbNVYghNXT6/WMqz7TY5lnkLNaWw6nAXne/2d1/ClwCbAtcJklYzFelMbYoQqeqLhJjmXIUa3A4Hrhl6vcDxbZ7mdl2M1szs7XDhw8PWjjJV5O1lPoQQ4AYWh/riElzsQaHpdz9QndfdffVlZWV0MUZlAY1+xVLgBijKgkWMbcCcxJrcDgInDD1++Zi2+jF2AWRghgHWtU9Ml/MXVpjEmtwuBo4ycxONLMjgXOA3YHLFJyumNoJsdRF07x8VYwSWpTBwd3vAV4DfB64EbjU3a8PWyrJQdWr0iEr7VzXZ+qLAuowokxlBXD3y4HLQ5dDxqtOSmfb1E9VbPXEnG6bCy28lxjleMen6bLpfZdF3wtZRgvvZURdEHEZatn0JmXRWJS0EW23kpRTQEhP359ZTHeLkzwoOIgEoi6gNI3lc1O3kkgLTTNn1AWUpjF9bgoOIi3VHVPoY76K0jv7N7Z5RupWEulADJWw0julSwoOIhlRQCinwFmPupUSp0X40qMuoOF1MVYwts9NwSFhYxocy43mqwyny7GCMX1u6lZKlPLa06fPKU1j+dwUHEQaUP+15E7dSiI1qTsvLWMbK+iKgkOi9IUPY2y57rkoGytQQkc5dSslTHnt46DPuBsbj928FqCO733UckicbqmYN3Vh9UMtwOUUHKSUmtyzhuzOUwUmISk4yFy6Yi03plx3GS+NOcgMzaFYrupx0HhBnDaO101vlwm1HER60rb1pYy0fqkFuJhaDiOjK9lhdNX6UkZav3Q8y6nlMCJVr2R1xRoXZaRJCAoOI1E380VNbpF6QmT39fmeCg5SSleszan1NS4hsvv6fk8FB5GeVGl91bny07yTOIWYjzLEeyo4jISuZMNY1Pqqc+WneScytCDBwczeYWbfNLOvm9mnzeyoqccuMLO9ZnaTmT03RPlypXGEcDZe9de58tNMaQkhVCrrF4EL3P0eM3sbcAFwvpk9DjgHeDzwKOAKM/tVd/9ZoHJmRwFheKH7o/WZ9yvEhLoh3jNIy8Hdv+Du9xS/XglsLv6/DbjE3X/i7t8B9gKnhiijSBeGvrqfNyahFkb/umiV1x1T6rsnwNy90xesXQCzfwE+5u4fMbO/Ba50948Uj30A+Jy7f2LO320HtgNs2bLllP379w9ZbJFKupoVXeUqcdl7qQURr1BLeZjZHndfnfdYby0HM7vCzK6b87Nt6jlvAe4BLq77+u5+obuvuvvqyspKl0UXGUSdK79lz1XrIF2xjin1Nubg7mcsetzMXg68ADjd72u+HAROmHra5mKbSJKW9Q3XXUpDZChBBqTN7HnAecBvufvdUw/tBj5qZu9kMiB9EvDVAEUcFQ1eNlP1uMWwPpI+V6kryJiDme0FHgR8r9h0pbv/YfHYW4BXMuluer27f27Z662urvra2lpfxc2ali1uJsbjVnetLIlHjGMOwQeku6Dg0MyiPk1VKOViPm6hWyjSXIjPblFw0JLdIhlRQEhXbJ+dls8QEZEZCg4jpvWWmtFxkzFQcBg5rbfUTNPjppVVJRUakBYZSIwZTjJuQWZIi8h9Yp0FK/1JvZWo4CAi0rEcFj9UcBAR6VAurUQFB5EBKMNJUqPgIDIQZYZJSpStJNIRLV0h61LJTFO2kkjPchiAlO7k0EpUy0GkpZgX4hsDtdiaU8tBKkk9L1vGRy22/ig4CKCTTNKTS8porBQcRCdZS0pTlRwpOIh0IIcBSOlGLt2zCg4iHdm386x7f6R/MbbYcuqeVbaSAOnkZYts1Ge2UtXXXhYEYj2XdA/pEWlzoiglUOQ+VS+YqrQOYj2fFBxGQlf/It2oOnelardRrOeh5jmMgDKOROIUa2BYRsFBRKQnqQYGgCNCF0BEJDb7dp61sJs21QHoOtRyyETVtL5ccrBF+lY2d2UMgQE0IJ2dRRlHGrAWaSe3RRYXDUgH7VYyszcCfwWsuPsdZmbAu4EzgbuBl7v7NSHLmJqyL+iiAesUv9Qi0q9g3UpmdgLwHOC7U5ufD5xU/GwH3hegaCIioxdyzOFdwHnAdL/WNuDDPnElcJSZHRekdCIiG8SwZMdQ44ZBgoOZbQMOuvvXNjx0PHDL1O8Him3zXmO7ma2Z2drhw4d7Kmk+YvhSi+RgLGs39RYczOwKM7tuzs824M3An7R5fXe/0N1X3X11ZWWlm0JnTiuHivRjiOy/oSe69jYg7e5nzNtuZk8ATgS+Nhl/ZjNwjZmdChwETph6+uZim3REAUGknbEkdwzereTu33D3X3L3re6+lUnX0cnufiuwG3iZTTwVuMvdDw1dRhGRsYttEtzlwM3AXuD9wB+FLY6ISByGHjcMHhyKFsQdxf/d3V/t7o9x9ye4u2a2iUhUQiZ3DDluqBnSIiIN5HD/k2hnSIuIpCrVgFBV8G4lERGJj4KDiIjMUHAQEZEZCg4iIjJDwUFERGZkkcpqZoeB/aHLUeJY4I7QhehALvsB+exLLvsB+exLavvxaHefuzhdFsEhZma2VpZHnJJc9gPy2Zdc9gPy2Zdc9gPUrSQiInMoOIiIyAwFh/5dGLoAHcllPyCffcllPyCffcllPzTmICIis9RyEBGRGQoOIiIyQ8GhI2b2+2Z2vZn93MxWNzx2gZntNbObzOy5U9ufV2zba2Y7hi/1cmb2VjM7aGbXFj9nTj02d79ilcLxXsTM9pnZN4rPYa3YdoyZfdHMvlX8e3Tocs5jZh80s9vN7LqpbXPLXtwJ8j3F5/R1Mzs5XMnvr2Q/sjlH7sfd9dPBD/BrwGOB/wBWp7Y/Dvga8CAm987+NvDA4ufbwC8DRxbPeVzo/ZizX28F3jRn+9z9Cl3eBfuRxPFesg/7gGM3bHs7sKP4/w7gbaHLWVL2ZwAnA9ctKztwJvA5wICnAleFLv+S/cjiHNn4o5ZDR9z9Rne/ac5D24BL3P0n7v4dJrdAPbX42evuN7v7T4FLiuemomy/YpX68S6zDdhV/H8XcHbAspRy9/8C7tywuazs24AP+8SVwFFmdtwwJV2sZD/KpHaO3I+CQ/+OB26Z+v1Asa1se4xeUzTvPzjVbZFS+SG98s7jwBfMbI+ZbS+2bXL3Q8X/bwU2hSlaI2VlT/GzyuEcuR8FhxrM7Aozu27OT9JXoEv2633AY4AnA4eAvw5a2HF7urufDDwfeLWZPWP6QZ/0ZSSZm55y2cn0HNFtQmtw9zMa/NlB4ISp3zcX21iwfVBV98vM3g9cVvy6aL9ilFp5Z7j7weLf283s00y6KG4zs+Pc/VDR9XJ70ELWU1b2pD4rd79t/f+JnyP3o5ZD/3YD55jZg8zsROAk4KvA1cBJZnaimR0JnFM8Nyob+npfCKxnaZTtV6ySON5lzOwXzexh6/8HnsPks9gNnFs87VzgM2FK2EhZ2XcDLyuylp4K3DXV/RSdjM6R+1HLoSNm9kLgvcAK8Fkzu9bdn+vu15vZpcANwD3Aq939Z8XfvAb4PJNMmg+6+/WBir/I283syUya/PuAPwBYtF8xcvd7EjneZTYBnzYzmJy3H3X3fzWzq4FLzexVTJatf3HAMpYys38Cngkca2YHgD8FdjK/7JczyVjaC9wNvGLwApco2Y9n5nCObKTlM0REZIa6lUREZIaCg4iIzFBwEBGRGQoOIiIyQ8FBRERmKDiI1GRmPw5dBpG+KTiIiMgMBQeRDpjZVjP792LxtX8zsy3F9n8o7k3wFTO72cxeVGx/gJn9vZl9s7iXweXrj4nEQMFBpBvvBXa5+xOBi4H3TD12HPB04AVMZgUD/C6wlcma/y8FnjZYSUUqUHAQ6cbTgI8W//9HJsFg3T+7+8/d/QbuW5b66cDHi+23Al8arqgiyyk4iPTvJ1P/t2ClEKlBwUGkG19hstIrwEuALy95/n8Dv1eMPWxispibSDS0KqtIfQ8pVuRc907gtcCHzOyPgcMsX0n0k8DpTFbsvAW4Brirh7KKNKJVWUUCMbOHuvuPzeyRTNb5P60YfxAJTi0HkXAuM7OjgCOBP1dgkJio5SAiIjM0IC0iIjMUHEREZIaCg4iIzFBwEBGRGQoOIiIy4/8BFIGUiI7mNHoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "covid_data.plot(kind=\"scatter\", x=\"Long\", y=\"Lat\")" ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountry/RegionProvince/StateLatLongConfirmedRecoveredDeaths
99542020-01-22MexicoNaN23.6345-102.552800.00
99552020-01-23MexicoNaN23.6345-102.552800.00
99562020-01-24MexicoNaN23.6345-102.552800.00
99572020-01-25MexicoNaN23.6345-102.552800.00
99582020-01-26MexicoNaN23.6345-102.552800.00
...........................
100122020-03-20MexicoNaN23.6345-102.55281644.01
100132020-03-21MexicoNaN23.6345-102.55282034.02
100142020-03-22MexicoNaN23.6345-102.55282514.02
100152020-03-23MexicoNaN23.6345-102.55283164.03
100162020-03-24MexicoNaN23.6345-102.5528367NaN4
\n", "

63 rows × 8 columns

\n", "
" ], "text/plain": [ " Date Country/Region Province/State Lat Long Confirmed \\\n", "9954 2020-01-22 Mexico NaN 23.6345 -102.5528 0 \n", "9955 2020-01-23 Mexico NaN 23.6345 -102.5528 0 \n", "9956 2020-01-24 Mexico NaN 23.6345 -102.5528 0 \n", "9957 2020-01-25 Mexico NaN 23.6345 -102.5528 0 \n", "9958 2020-01-26 Mexico NaN 23.6345 -102.5528 0 \n", "... ... ... ... ... ... ... \n", "10012 2020-03-20 Mexico NaN 23.6345 -102.5528 164 \n", "10013 2020-03-21 Mexico NaN 23.6345 -102.5528 203 \n", "10014 2020-03-22 Mexico NaN 23.6345 -102.5528 251 \n", "10015 2020-03-23 Mexico NaN 23.6345 -102.5528 316 \n", "10016 2020-03-24 Mexico NaN 23.6345 -102.5528 367 \n", "\n", " Recovered Deaths \n", "9954 0.0 0 \n", "9955 0.0 0 \n", "9956 0.0 0 \n", "9957 0.0 0 \n", "9958 0.0 0 \n", "... ... ... \n", "10012 4.0 1 \n", "10013 4.0 2 \n", "10014 4.0 2 \n", "10015 4.0 3 \n", "10016 NaN 4 \n", "\n", "[63 rows x 8 columns]" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from datetime import datetime\n", "#covid_mexico['Date'] =pd.to_datetime(covid_mexico.Date, format=\"%Y-%m-%d\")\n", "mexico_sort=covid_mexico.sort_values(by='Date', ascending=True)\n", "mexico_sort" ] }, { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountry/RegionProvince/StateLatLongConfirmedRecoveredDeaths
99912020-02-28MexicoNaN23.6345-102.552810.00
99922020-02-29MexicoNaN23.6345-102.552840.00
99932020-03-01MexicoNaN23.6345-102.552850.00
99942020-03-02MexicoNaN23.6345-102.552850.00
99952020-03-03MexicoNaN23.6345-102.552851.00
99962020-03-04MexicoNaN23.6345-102.552851.00
99972020-03-05MexicoNaN23.6345-102.552851.00
99982020-03-06MexicoNaN23.6345-102.552861.00
99992020-03-07MexicoNaN23.6345-102.552861.00
100002020-03-08MexicoNaN23.6345-102.552871.00
100012020-03-09MexicoNaN23.6345-102.552871.00
100022020-03-10MexicoNaN23.6345-102.552874.00
100032020-03-11MexicoNaN23.6345-102.552884.00
100042020-03-12MexicoNaN23.6345-102.5528124.00
100052020-03-13MexicoNaN23.6345-102.5528124.00
100062020-03-14MexicoNaN23.6345-102.5528264.00
100072020-03-15MexicoNaN23.6345-102.5528414.00
100082020-03-16MexicoNaN23.6345-102.5528534.00
100092020-03-17MexicoNaN23.6345-102.5528824.00
100102020-03-18MexicoNaN23.6345-102.5528934.00
100112020-03-19MexicoNaN23.6345-102.55281184.01
100122020-03-20MexicoNaN23.6345-102.55281644.01
100132020-03-21MexicoNaN23.6345-102.55282034.02
100142020-03-22MexicoNaN23.6345-102.55282514.02
100152020-03-23MexicoNaN23.6345-102.55283164.03
100162020-03-24MexicoNaN23.6345-102.5528367NaN4
\n", "
" ], "text/plain": [ " Date Country/Region Province/State Lat Long Confirmed \\\n", "9991 2020-02-28 Mexico NaN 23.6345 -102.5528 1 \n", "9992 2020-02-29 Mexico NaN 23.6345 -102.5528 4 \n", "9993 2020-03-01 Mexico NaN 23.6345 -102.5528 5 \n", "9994 2020-03-02 Mexico NaN 23.6345 -102.5528 5 \n", "9995 2020-03-03 Mexico NaN 23.6345 -102.5528 5 \n", "9996 2020-03-04 Mexico NaN 23.6345 -102.5528 5 \n", "9997 2020-03-05 Mexico NaN 23.6345 -102.5528 5 \n", "9998 2020-03-06 Mexico NaN 23.6345 -102.5528 6 \n", "9999 2020-03-07 Mexico NaN 23.6345 -102.5528 6 \n", "10000 2020-03-08 Mexico NaN 23.6345 -102.5528 7 \n", "10001 2020-03-09 Mexico NaN 23.6345 -102.5528 7 \n", "10002 2020-03-10 Mexico NaN 23.6345 -102.5528 7 \n", "10003 2020-03-11 Mexico NaN 23.6345 -102.5528 8 \n", "10004 2020-03-12 Mexico NaN 23.6345 -102.5528 12 \n", "10005 2020-03-13 Mexico NaN 23.6345 -102.5528 12 \n", "10006 2020-03-14 Mexico NaN 23.6345 -102.5528 26 \n", "10007 2020-03-15 Mexico NaN 23.6345 -102.5528 41 \n", "10008 2020-03-16 Mexico NaN 23.6345 -102.5528 53 \n", "10009 2020-03-17 Mexico NaN 23.6345 -102.5528 82 \n", "10010 2020-03-18 Mexico NaN 23.6345 -102.5528 93 \n", "10011 2020-03-19 Mexico NaN 23.6345 -102.5528 118 \n", "10012 2020-03-20 Mexico NaN 23.6345 -102.5528 164 \n", "10013 2020-03-21 Mexico NaN 23.6345 -102.5528 203 \n", "10014 2020-03-22 Mexico NaN 23.6345 -102.5528 251 \n", "10015 2020-03-23 Mexico NaN 23.6345 -102.5528 316 \n", "10016 2020-03-24 Mexico NaN 23.6345 -102.5528 367 \n", "\n", " Recovered Deaths \n", "9991 0.0 0 \n", "9992 0.0 0 \n", "9993 0.0 0 \n", "9994 0.0 0 \n", "9995 1.0 0 \n", "9996 1.0 0 \n", "9997 1.0 0 \n", "9998 1.0 0 \n", "9999 1.0 0 \n", "10000 1.0 0 \n", "10001 1.0 0 \n", "10002 4.0 0 \n", "10003 4.0 0 \n", "10004 4.0 0 \n", "10005 4.0 0 \n", "10006 4.0 0 \n", "10007 4.0 0 \n", "10008 4.0 0 \n", "10009 4.0 0 \n", "10010 4.0 0 \n", "10011 4.0 1 \n", "10012 4.0 1 \n", "10013 4.0 2 \n", "10014 4.0 2 \n", "10015 4.0 3 \n", "10016 NaN 4 " ] }, "execution_count": 100, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mexico_filter = mexico_sort[mexico_sort['Confirmed']!=0]\n", "mexico_filter" ] }, { "cell_type": "code", "execution_count": 118, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n", " 18, 19, 20, 21, 22, 23, 24, 25, 26])" ] }, "execution_count": 118, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n=mexico_filter.shape[0]\n", "days=np.arange(1,n+1,1)\n", "days" ] }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 119, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAUZUlEQVR4nO3df4xd5Z3f8fdnXW92lKw6UEbIHtyaptSrbKK10ZRkRbSipFkDrYQTbRGplKURrVMJ1ERaWYvzT9iqEW69CVWkFokIGqdKw6KN11gbWi8FpDSRAjtggvlRN25ChAcHzy5xAsqUgvPtH3NMBmd+3Dtz79w7Z94vaTTnfs859z5Hx/7Mmec8c55UFZKkdvmVQTdAktR7hrsktZDhLkktZLhLUgsZ7pLUQn9j0A0AuOiii2rr1q2DboYkrSlPPPHEX1XV2HzrhiLct27dyuTk5KCbIUlrSpIfLrTObhlJaiHDXZJayHCXpBYy3CWphQx3SWqhoRgtI0nrzaGjU+w/cpyXzsyweXSEPTu3sWvHeM/e33CXpFV26OgUew8eY+aNswBMnZlh78FjAD0LeLtlJGmV7T9y/K1gP2fmjbPsP3K8Z59huEvSKnvpzExX9eUw3CVplW0eHemqvhyGuyStsj07tzGyccPbaiMbN7Bn57aefYY3VCVplZ27aepoGUlqmV07xnsa5uezW0aSWmjJcE/ya0keT/LdJM8m+aOm/uUkP0jyVPO1vaknyReTnEjydJLL+30QkqS366Rb5nXg6qp6LclG4FtJ/luzbk9V/el5218LXNZ8vR+4q/kuSVolS16516zXmpcbm69aZJfrga80+30HGE2yaeVNlSR1qqM+9yQbkjwFnAYeqqrHmlWfa7pe7kzyjqY2Drw4Z/eTTe3899ydZDLJ5PT09AoOQZJ0vo7CvarOVtV24BLgiiTvBfYCvwH8A+BC4A+7+eCquruqJqpqYmxs3ikAJUnL1NVomao6AzwKXFNVp5qul9eB/wxc0Ww2BWyZs9slTU2StEo6GS0zlmS0WR4BPgz8r3P96EkC7AKeaXY5DPx+M2rmA8BPqupUX1ovSZpXJ6NlNgEHkmxg9ofB/VX150keSTIGBHgK+FfN9g8C1wEngJ8Bn+h9syVJi1ky3KvqaWDHPPWrF9i+gFtW3jRJ0nL5F6qS1EKGuyS1kOEuSS1kuEtSCxnuktRChrsktZDhLkktZLhLUgsZ7pLUQoa7JLWQE2RLUg8cOjrF/iPHeenMDJtHR9izc1tfJ8BeiuEuSSt06OgUew8eY+aNswBMnZlh78FjAAMLeLtlJGmF9h85/lawnzPzxln2Hzk+oBYZ7pK0Yi+dmemqvhoMd0laoc2jI13VV4PhLkkrtGfnNkY2bnhbbWTjBvbs3DagFnlDVZJW7NxNU0fLSFLL7NoxPtAwP18nE2T/WpLHk3w3ybNJ/qipX5rksSQnkvxJkl9t6u9oXp9o1m/t7yFIks7XSZ/768DVVfVbwHbgmiQfAP4dcGdV/T3gx8DNzfY3Az9u6nc220mSVtGS4V6zXmtebmy+Crga+NOmfgDY1Sxf37ymWf+hJOlZiyVJS+potEySDUmeAk4DDwH/BzhTVW82m5wEznU2jQMvAjTrfwL8rXnec3eSySST09PTKzsKSdLbdBTuVXW2qrYDlwBXAL+x0g+uqruraqKqJsbGxlb6dpKkOboa515VZ4BHgd8GRpOcG21zCTDVLE8BWwCa9X8T+OuetFaS1JFORsuMJRltlkeADwPPMxvyv9dsdhPwQLN8uHlNs/6RqqpeNlqStLhOxrlvAg4k2cDsD4P7q+rPkzwH3Jfk3wJHgXua7e8B/kuSE8ArwI19aLckaRFLhntVPQ3smKf+fWb738+v/1/gn/akdZKkZfHZMpLUQoa7JLWQ4S5JLWS4S1ILGe6S1EKGuyS1kOEuSS1kuEtSCxnuktRChrsktZDhLkktZLhLUgsZ7pLUQoa7JLWQ4S5JLWS4S1ILGe6S1EKGuyS1UCcTZG9J8miS55I8m+RTTf32JFNJnmq+rpuzz94kJ5IcT7KznwcgSb126OgUV+57hEtv+wZX7nuEQ0enBt2krnUyQfabwB9U1ZNJfh14IslDzbo7q+qP526c5D3MTor9m8Bm4H8k+ftVdbaXDZekfjh0dIq9B48x88ZsZE2dmWHvwWMA7NoxPsimdWXJK/eqOlVVTzbLrwLPA4sd4fXAfVX1elX9ADjBPBNpS9Iw2n/k+FvBfs7MG2fZf+T4gFq0PF31uSfZCuwAHmtKtyZ5Osm9SS5oauPAi3N2O8k8PwyS7E4ymWRyenq664ZLUj+8dGamq/qw6jjck7wL+Drw6ar6KXAX8G5gO3AK+Hw3H1xVd1fVRFVNjI2NdbOrJPXN5tGRrurDqqNwT7KR2WD/alUdBKiql6vqbFX9HPgSv+h6mQK2zNn9kqYmSUNvz85tjGzc8LbayMYN7Nm5bUAtWp5ORssEuAd4vqq+MKe+ac5mHwGeaZYPAzcmeUeSS4HLgMd712RJ6p9dO8a546PvY3x0hADjoyPc8dH3rambqdDZaJkrgY8Dx5I81dQ+A3wsyXaggBeATwJU1bNJ7geeY3akzS2OlJG0luzaMb7mwvx8S4Z7VX0LyDyrHlxkn88Bn1tBuyRJK+BfqEpSCxnuktRChrsktZDhLkktZLhLUgsZ7pLUQoa7JLWQ4S5JLWS4S1ILGe6S1EKGuyS1kOEuSS1kuEtSCxnuktRChrsktZDhLkktZLhLUgt1Ms2eJK1ph45Osf/IcV46M8Pm0RH27Ny25qfRW0onE2RvSfJokueSPJvkU039wiQPJfle8/2Cpp4kX0xyIsnTSS7v90FI0kIOHZ1i78FjTJ2ZoYCpMzPsPXiMQ0enBt20vuqkW+ZN4A+q6j3AB4BbkrwHuA14uKouAx5uXgNcC1zWfO0G7up5qyWpQ/uPHGfmjbNvq828cZb9R44PqEWrY8lwr6pTVfVks/wq8DwwDlwPHGg2OwDsapavB75Ss74DjCbZ1POWS1IHXjoz01W9Lbq6oZpkK7ADeAy4uKpONat+BFzcLI8DL87Z7WRTO/+9dieZTDI5PT3dZbMlqTObR0e6qrdFx+Ge5F3A14FPV9VP566rqgKqmw+uqruraqKqJsbGxrrZVZI6tmfnNkY2bnhbbWTjBvbs3DagFq2OjkbLJNnIbLB/taoONuWXk2yqqlNNt8vppj4FbJmz+yVNTZJW3blRMetttMyS4Z4kwD3A81X1hTmrDgM3Afua7w/Mqd+a5D7g/cBP5nTfSNKq27VjvPVhfr5OrtyvBD4OHEvyVFP7DLOhfn+Sm4EfAjc06x4ErgNOAD8DPtHTFkuSlrRkuFfVt4AssPpD82xfwC0rbJckaQV8/IAktZDhLkktZLhLUgsZ7pLUQoa7JLWQ4S5JLWS4S1ILGe6S1EKGuyS1kOEuSS1kuEtSCzlBtqQ1Zz1OeN0tw13SmnJuwutz86Kem/AaMODnsFtG0pqyXie87pbhLmlNWa8TXnfLcJe0pqzXCa+7ZbhLWlPW64TX3fKGqqQ1Zb1OeN2tTibIvhf4J8DpqnpvU7sd+JfAdLPZZ6rqwWbdXuBm4Czwr6vqSB/aLWkdW48TXnerk26ZLwPXzFO/s6q2N1/ngv09wI3Abzb7/KckG+bZV5LUR0uGe1V9E3ilw/e7Hrivql6vqh8AJ4ArVtA+SdIyrOSG6q1Jnk5yb5ILmto48OKcbU42tV+SZHeSySST09PT820iSVqm5Yb7XcC7ge3AKeDz3b5BVd1dVRNVNTE2NrbMZkiS5rOscK+ql6vqbFX9HPgSv+h6mQK2zNn0kqYmSVpFywr3JJvmvPwI8EyzfBi4Mck7klwKXAY8vrImSpK61clQyK8BVwEXJTkJfBa4Ksl2oIAXgE8CVNWzSe4HngPeBG6pqrPzva8kqX9SVYNuAxMTEzU5OTnoZkjSmpLkiaqamG+djx+QpBYy3CWphQx3SWohw12SWshwl6QWMtwlqYUMd0lqIcNdklrIcJekFnKaPUkDd+jolNPm9ZjhLmmgDh2dYu/BY8y8MfsYqqkzM+w9eAzAgF8Bu2UkDdT+I8ffCvZzZt44y/4jxwfUonYw3CUN1EtnZrqqqzOGu6SB2jw60lVdnTHcJQ3Unp3bGNm44W21kY0b2LNz24Ba1A7eUJU0UOdumjpaprcMd0kDt2vHuGHeY3bLSFILLRnuSe5NcjrJM3NqFyZ5KMn3mu8XNPUk+WKSE0meTnJ5PxsvSZpfJ1fuXwauOa92G/BwVV0GPNy8BrgWuKz52g3c1ZtmSpK6sWS4V9U3gVfOK18PHGiWDwC75tS/UrO+A4wm2dSrxkqSOrPcPveLq+pUs/wj4OJmeRx4cc52J5vaL0myO8lkksnp6ellNkOSNJ8Vj5apqkpSy9jvbuBugImJia73lzS8fBDY4C033F9OsqmqTjXdLqeb+hSwZc52lzQ1SeuEDwIbDsvtljkM3NQs3wQ8MKf++82omQ8AP5nTfSNpHfBBYMNhySv3JF8DrgIuSnIS+CywD7g/yc3AD4Ebms0fBK4DTgA/Az7RhzZLGmI+CGw4LBnuVfWxBVZ9aJ5tC7hlpY2StHZtHh1hap4g90Fgq8u/UJXUUz4IbDj4bBlJS+pm9IsPAhsOhrukRS1n9IsPAhs8u2UkLcrRL2uT4S5pUY5+WZsMd0mLchq8tclwl7QoR7+sTd5QlbQoR7+sTYa7pCU5+mXtsVtGklrIcJekFjLcJamFDHdJaiHDXZJayHCXpBYy3CWphQx3SWoh/4hJWme6eTa71q4VhXuSF4BXgbPAm1U1keRC4E+ArcALwA1V9eOVNVNSLyzn2exam3rRLfMPq2p7VU00r28DHq6qy4CHm9eShoDPZl8/+tHnfj1woFk+AOzqw2dIWgafzb5+rDTcC/iLJE8k2d3ULq6qU83yj4CL59sxye4kk0kmp6enV9gMSZ3w2ezrx0rD/YNVdTlwLXBLkt+Zu7KqitkfAL+kqu6uqomqmhgbG1thMyR1wmezrx8ruqFaVVPN99NJ/gy4Ang5yaaqOpVkE3C6B+2UtIBuRr/4bPb1Y9nhnuSdwK9U1avN8u8C/wY4DNwE7Gu+P9CLhkr6ZcsZ/eKz2deHlXTLXAx8K8l3gceBb1TVf2c21D+c5HvAP2peS+oDR79oIcu+cq+q7wO/NU/9r4EPraRRkjrj6BctxMcPSGuYo1+0EMNdWsMc/aKF+GwZaQ1z9IsWYrhLa5yjXzQfw10aMj61Ub1guEtDxKc2qle8oSoNEcetq1cMd2mIOG5dvWK4S0PEcevqFcNdGiKOW1eveENVGiKOW1evGO7SkHHcunrBcJe61O04dMetaxAMd6kL3Y5Dd9y6BsUbqlr3Dh2d4sp9j3Dpbd/gyn2PcOjo1ILbdjsO3XHrGhSv3PU2/e5yGMbtu7my7nYcuuPWNSjrKtyHMVj63XfbzT797nIYtu1h8Svr+fbZPDrC1DzBvNj49G62l3pl3XTLnPuPP3VmhuIX//EX+hV8rW+/nH363eUwbNtD91fW3Y5Dd9y6BqVv4Z7kmiTHk5xIcls/PmOY+kqHbfvl7NPvLodhq0P3fxG6a8c4d3z0fYyPjhBgfHSEOz76vkUno+5me6lX+tItk2QD8B+BDwMngb9McriqnuvVZwxbX+mw1ZezT7+7HIZte5i9sp777wiWvrLudhy649Y1CP26cr8COFFV36+q/wfcB1zfyw/o9qq02yu0tV5fzj797nIYtu3BK2u1V7/CfRx4cc7rk03tLUl2J5lMMjk9Pd31BwxbX+mwbb+cffrd5TBs28/d79u3Xc0P9v1jvn3b1Qa7WiFV1fs3TX4PuKaq/kXz+uPA+6vq1vm2n5iYqMnJya4+48p9j8z7K/j46Ajfvu3qefcZttEswzZaRtLakuSJqpqYd12fwv23gduramfzei9AVd0x3/bLCffz+9xh9qrUX6klrReLhXu/xrn/JXBZkkuBKeBG4J/18gN8ep4kLawv4V5Vbya5FTgCbADurapne/05jkKQpPn17S9Uq+pB4MF+vb8kaWHr5i9UJWk9MdwlqYUMd0lqIcNdklqoL+Pcu25EMg38sHl5EfBXA2zOIHjM64PHvD6s5jH/naoam2/FUIT7XEkmFxqU31Ye8/rgMa8Pw3LMdstIUgsZ7pLUQsMY7ncPugED4DGvDx7z+jAUxzx0fe6SpJUbxit3SdIKGe6S1EJDFe6rMan2sEnyQpJjSZ5K0t1D7deIJPcmOZ3kmTm1C5M8lOR7zfcLBtnGXlvgmG9PMtWc66eSXDfINvZSki1JHk3yXJJnk3yqqbf2PC9yzENxnoemz72ZVPt/M2dSbeBjvZxUexgleQGYqKrW/qFHkt8BXgO+UlXvbWr/HnilqvY1P8gvqKo/HGQ7e2mBY74deK2q/niQbeuHJJuATVX1ZJJfB54AdgH/nJae50WO+QaG4DwP05V73yfV1mBU1TeBV84rXw8caJYPMPufojUWOObWqqpTVfVks/wq8Dyz8ya39jwvcsxDYZjCfclJtVuqgL9I8kSS3YNuzCq6uKpONcs/Ai4eZGNW0a1Jnm66bVrTRTFXkq3ADuAx1sl5Pu+YYQjO8zCF+3r1waq6HLgWuKX5dX5dqdm+weHoH+yvu4B3A9uBU8DnB9uc3kvyLuDrwKer6qdz17X1PM9zzENxnocp3KeALXNeX9LUWq2qpprvp4E/Y7Z7aj14uemzPNd3eXrA7em7qnq5qs5W1c+BL9Gyc51kI7Mh99WqOtiUW32e5zvmYTnPwxTub02qneRXmZ1U+/CA29RXSd7Z3IghyTuB3wWeWXyv1jgM3NQs3wQ8MMC2rIpzIdf4CC0610kC3AM8X1VfmLOqted5oWMelvM8NKNlAJohQ/+BX0yq/bkBN6mvkvxdZq/WYXY+2//axmNO8jXgKmYfhfoy8FngEHA/8LeZfdzzDVXVmhuQCxzzVcz+ql7AC8An5/RHr2lJPgj8T+AY8POm/Blm+6BbeZ4XOeaPMQTneajCXZLUG8PULSNJ6hHDXZJayHCXpBYy3CWphQx3SWohw12SWshwl6QW+v9sDN8BNW3erAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#mexico_filter = mexico_sort[mexico_sort['Confirmed']!=0]\n", "plt.scatter(x=days, y=mexico_filter['Confirmed'])" ] }, { "cell_type": "code", "execution_count": 127, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1.07768657, 0.22640743, -3.90363561])" ] }, "execution_count": 132, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from scipy.optimize import curve_fit\n", "def exponential(x, a,k, b):\n", " return a*np.exp(x*k) + b\n", "\n", "potp, pcov = curve_fit(exponential, days, mexico_filter['Confirmed'])\n", "potp" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 133, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 133, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD7CAYAAACRxdTpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3wV9Z3/8dcnIVwCKqApIORCvVStdalG1C5br1y8ol212Fjx8jPdrba6tW7RrFu3boq2VtRqbUNFoR6L1iu6ritSWmtbL8EiImhFTQKIEEW5GCQk+fz+mImcQC4nyTmZk5P38/GYx3znOzPnfMbz8JPhO9/5fs3dERGRzJIVdQAiIpJ8Su4iIhlIyV1EJAMpuYuIZCAldxGRDKTkLiKSgRJO7maWbWZ/M7Mnw+2xZvaima0yswfMrH9YPyDcXhXuL0pN6CIi0pbO3LlfAayM274JmOXu+wMfAZeE9ZcAH4X1s8LjRESkB1kiLzGZ2RhgLlAOfA84HagFRrp7g5kdA1zv7pPN7P/C8l/NrB/wPpDn7XzRPvvs40VFRd2/GhGRPmTJkiUfuHtea/v6JfgZtwL/DuwRbu8NfOzuDeH2GmB0WB4NrAYIE/+m8PgP2vrwoqIiKisrEwxFREQAzKy6rX0dNsuY2WnABndfkuSgSs2s0swqa2trk/nRIiJ9XiJt7v8InGFmVcB84ATgNmBo2OwCMAZYG5bXAvkA4f69gA93/VB3r3D3Yncvzstr9V8VIiLSRR0md3e/xt3HuHsRMA34vbuXAIuBs8PDpgOPh+UF4Tbh/t+3194uIiLJ151+7j8Avmdmqwja1O8O6+8G9g7rvwfM6F6IIiLSWYk+UAXA3f8A/CEsvwOMb+WYT4FzkhCbiIh0kd5QFRHJQEruIiIRSeXTSCV3EZEIvPkmHHgg/OhHqfl8JXcRkQg88QSsWgVvvZWaz1dyFxGJwIIFwfr001Pz+UruIiI97MMP4c9/hpwcmDw5Nd+h5C4i0sOeegqamuDYY2GvvVLzHUruIiI97IkngvUZZ6TuO5TcRUR6UH09PP10UE5VezsouYuI9Kg//hG2bIH8/I847rgisrKyKCoqIhaLJfV7OjX8gIiIdE9zL5l162bT0BAMx15dXU1paSkAJSUlSfke3bmLiPQQ953t7Q0ND7fYV1dXR1lZWdK+S8ldRKSHvPYaVFdDMPvoy7vtr6mpSdp3KbmLiPSQ5rv2IUP+AOw+sExBQUHSvkvJXUSkhzS3t1966Shyc3Nb7MvNzaW8vDxp36XkLiLSA95/H156CQYOhBtuOJaKigoKCwsxMwoLC6moqEjaw1RQbxkRkR7x5JPB+sQTYfDgoFdMMpP5rjq8czezgWb2kpm9amavm9l/hfX3mtm7ZrY0XMaF9WZmt5vZKjNbZmaHpyx6EZFeoifeSo2XyJ37duAEd99qZjnA82b2v+G+q939oV2OPxk4IFyOAu4K1yIifdK2bbBwYVA+7bSe+c4O79w9sDXczAmX9uYPmQrMC897ARhqZqO6H6qISO+0aFGQ4IuLYd99e+Y7E3qgambZZrYU2AAsdPcXw13lYdPLLDMbENaNBlbHnb4mrBMR6ZNSPXZ7axJK7u7e6O7jgDHAeDM7FLgGOAg4EhgO/KAzX2xmpWZWaWaVtbW1nQxbRKR3aGra+TA17ZJ7M3f/GFgMTHH3dWHTy3bgHmB8eNhaID/utDFh3a6fVeHuxe5enJeX17XoRUTS3JIlsG4djBkD48b13Pcm0lsmz8yGhuVBwETgjeZ2dDMz4ExgeXjKAuCCsNfM0cAmd1+XkuhFRNJccy+Z008Hs5773kR6y4wC5ppZNsEfgwfd/Ukz+72Z5QEGLAX+JTz+KeAUYBVQB1yU/LBFRHqH5vb2nuoC2azD5O7uy4Avt1J/QhvHO3BZ90MTEendamrg1VeDl5aOO65nv1vDD4iIpEhzk8zkycGwAz1JyV1EJEXi29t7mpK7iEgKbNkCixcHD1FPPbXnv1/JXUQkBZ55JpgM+5hjIIre3kruIiIpEFUvmWZK7iIiSdbYCP/zP0E5ivZ2UHIXEUm6v/4VPvwQ9tsPDj44mhiU3EVEkiyqt1LjKbmLiCRZ1O3toOQuIpIUsViMoqIizA7kjTcgN7eeCROii0fJXUSkm2KxGKWlpVRXVwPBVEvbtz/Ggw/GIotJyV1EpJvKysqoq6sLt4LuMY2Nj1JWVhZZTImMCikiIu2oqakJS0OBfwJ2AE9TU7Mpsph05y4i0k0FBQVh6WSCe+Y/AR/H1fc8JXcRkW4qLy8nNzcXaO4es4Dc3FzKy8sji0nNMiIi3VRSUkJDQxYXXXQK7rDvvq/wk59UUFJSEllMHSZ3MxsIPAcMCI9/yN1/aGZjgfnA3sAS4JvuXm9mA4B5wBHAh8DX3b0qRfGLiKSFMWPOwx0OOQRef/25qMNJqFlmO3CCu/8DMA6YEs6NehMwy933Bz4CLgmPvwT4KKyfFR4nIpLRfve7YB3VWDK76jC5e2BruJkTLg6cADwU1s8lmCQbYGq4Tbj/xHASbRGRjLRtG8yfH5TPPz/aWJol9EDVzLLNbCmwAVgIvA187O4N4SFrgNFheTSwGiDcv4mg6UZEJCM9+ihs2gTFxXDooVFHE0goubt7o7uPA8YA44GDuvvFZlZqZpVmVllbW9vdjxMRicw99wTriy+ONo54neoK6e4fA4uBY4ChZtb8QHYMsDYsrwXyAcL9exE8WN31syrcvdjdi/OimKZERCQJqqth0SIYMACmTYs6mp06TO5mlmdmQ8PyIGAisJIgyZ8dHjYdeDwsLwi3Cff/3t09mUGLiKSLuXPBHc46C4YNizqanRLp5z4KmGtm2QR/DB509yfNbAUw38z+G/gbcHd4/N3Ab8xsFbARSKO/ZSIiydPUBPfeG5QvuijSUHbTYXJ392XAl1upf4eg/X3X+k+Bc5ISnYhIGnvuOXj3XRgzBk48MepoWtLwAyIiXdT8IHX6dMjOjjaWXSm5i4h0webN8FD4ps+FF0YaSquU3EVEuuDBB6GuDr76Vdh//6ij2Z2Su4hIFzQ3yaTbg9RmSu4iIp305pvwl7/A4MFw9tkdHx8FJXcRkU5q7v547rkwZEikobRJyV1EpBMaG2HevKCcrk0yoOQuItIpzzwD770XPESdMCHqaNqm5C4i0glz5gTriy6CdB7MXMldRCRBH34ICxZAVhZccEHU0bRPyV1EJEH33w/19TBxYjDkQDpTchcRSVC6922Pp+QuIpKAV1+Fv/0tGNZ36tSoo+mYkruISAKa79q/8Q0YODDaWBKh5C4i0oH6erjvvqDcG5pkQMldRKRDTzwR9JT50pfg8MOjjiYxSu4iIh2If5Cazn3b4yUyh2q+mS02sxVm9rqZXRHWX29ma81sabicEnfONWa2yszeNLPJqbwAEZFki8ViFBUVkZWVxZgxR/LUU0306wfnnx91ZIlLZA7VBuAqd3/FzPYAlpjZwnDfLHe/Of5gMzuEYN7ULwL7As+a2YHu3pjMwEVEUiEWi1FaWkpdXR0Aa9ceD2QxblwNeXkF0QbXCR3eubv7Ond/JSxvAVYCo9s5ZSow3923u/u7wCpamWtVRCQdlZWVfZbYA8ET1Orq/4omoC7qVJu7mRURTJb9Ylh1uZktM7M5ZjYsrBsNrI47bQ3t/zEQEUkbNTU1cVtHAQcD71NbOy+iiLom4eRuZkOAh4Er3X0zcBewHzAOWAf8rDNfbGalZlZpZpW1tbWdOVVEJGUKCuKbXi4O17+hsLB33aMmlNzNLIcgscfc/REAd1/v7o3u3gTMZmfTy1ogP+70MWFdC+5e4e7F7l6cl5fXnWsQEUma8vJycnNzgUEEjw9h4MD5lJeXRxpXZ3X4QNXMDLgbWOnut8TVj3L3deHmWcDysLwAuN/MbiF4oHoA8FJSoxYRSZGSkhIArrjiZT78cE/691/Kr3/9vc/qe4tEesv8I/BN4DUzWxrWXQucZ2bjAAeqgG8BuPvrZvYgsIKgp81l6ikjIr3JN75Rwh13lPDhh3DbbeMoKRkXdUidZu4edQwUFxd7ZWVl1GGIiACweDGccALsvTdUVwcTYacjM1vi7sWt7dMbqiIiu/jxj4P1lVemb2LviJK7iEicl16CZ5+FIUPgssuijqbrlNxFROLMnBmsv/3tYOz23krJXUQktGIFPPYYDBgA//ZvUUfTPUruIiKhG28M1pdcAiNHRhtLdym5i4gA774bTICdnQ1XXx11NN2n5C4iAvz0p9DYCCUlUFQUdTTdp+QuIn3eunUwZ04wEceMGVFHkxxK7iLS582aBdu3w1lnwcEHRx1Ncii5i0iftnEj3HVXUL7mmmhjSSYldxHp0+64A7ZuhYkTobjVF/l7JyV3Eemztm6F224LytdeG20syabkLiJ91uzZQbPMMcfAscdGHU1yKbmLSJ+0fTvcfHNQvvbaoKdMJlFyF5E+ad48eO89OOwwOPXUqKNJPiV3EelzGhrgppuC8jXXZN5dOySQ3M0s38wWm9kKM3vdzK4I64eb2UIzeytcDwvrzcxuN7NVZrbMzA5P9UWIiLQnFotRVFREVlYWRUVFXHHF87z9Nuy/P5xzTtTRpUYid+4NwFXufghwNHCZmR0CzAAWufsBwKJwG+BkgnlTDwBKgbuSHrWISIJisRilpaVUV1fj7lRX13DXXcFYvj/4QTCWTCbqMLm7+zp3fyUsbwFWAqOBqcDc8LC5wJlheSowzwMvAEPNbFTSIxcRSUBZWRl1dXVxNafi/kWys9/nm9+MLKyU61Sbu5kVAV8GXgRGuPu6cNf7wIiwPBpYHXfamrBORKTH1dTU7FITdGhvbPwJAwb0fDw9JeHkbmZDgIeBK919c/w+D2bZ7tRM22ZWamaVZlZZW1vbmVNFRBJWUFAQt3UscAzwAfn5T0cUUc9IKLmbWQ5BYo+5+yNh9frm5pZwvSGsXwvkx50+Jqxrwd0r3L3Y3Yvz8vK6Gr+ISLvKy8vJzc0Nt4K79pycXzBzZll0QfWARHrLGHA3sNLdb4nbtQCYHpanA4/H1V8Q9po5GtgU13wjItKjSkpKqKioYOTI04FJmG3ljjsOpqSkJOrQUiqRO/d/BL4JnGBmS8PlFOBGYKKZvQWcFG4DPAW8A6wCZgPfTn7YIiKJKykpYfz4BQBcffUQSksztP9jnH4dHeDuzwNtdfE/sZXjHbism3GJiCTNwoWwYAEMHtz7J75OlN5QFZGMVl8P3/lOUL7uut4/8XWilNxFJKPNmgVvvgkHHth37tpByV1EMtiaNXDDDUH55z+H/v2jjacnKbmLSMa66ir45BP42tdg0qSoo+lZSu4ikpEWLYIHH4RBg4Kmmb5GyV1EMs6OHTsfopaVQYuXVPsIJXcRyTi33w4rVwZD+n7/+1FHEw0ldxHJKO+9B9dfH5Rvv52MHhysPUruIpJRrr4atm6FqVPh5JOjjiY6Su4ikjH++Ee4/34YOLBvPkSNp+QuIhlhxw64/PKgPGMGjB0bbTxRU3IXkV5n1zlRY7EYd94Jy5cHSf3f/z3qCKPX4cBhIiLppHlO1Oap86qrq7n00uuAc4D+3HZb0Le9r1NyF5FeZfc5UWHbth8C/Tn1VDj99GjiSjdqlhGRXmX3OVG/QjBf0KfcdlsEAaUpJXcR6VVazomaDdwJwF57/Yr99oskpLSk5C4ivUrLOVH/BRiHWTW33DIiyrDSTiJzqM4xsw1mtjyu7nozW7vLtHvN+64xs1Vm9qaZTU5V4CLSNzXPiTpmzOHAfwPw3e9WcfHF06INLM0kcud+LzCllfpZ7j4uXJ4CMLNDgGnAF8NzfmFm2ckKVkQEggQ/ceISYCiTJ8OsWcdGHVLa6TC5u/tzwMYEP28qMN/dt7v7uwSTZI/vRnwiIrt57DG45x7IyQnGj7G2Znnuw7rT5n65mS0Lm22GhXWjgdVxx6wJ60REkqKqCi66KCjfeGMwfZ7srqvJ/S5gP2AcsA74WWc/wMxKzazSzCpra2u7GIaI9CX19fD1r8PHH8MZZ/StOVE7q0vJ3d3Xu3ujuzcBs9nZ9LIWyI87dExY19pnVLh7sbsX5+XldSUMEeljZsyAl14KJt+45x41x7SnS8ndzEbFbZ4FNPekWQBMM7MBZjYWOAB4qXshiojA448HIz326wcPPADDh0cdUXrrcPgBM/stcBywj5mtAX4IHGdm4wAHqoBvAbj762b2ILACaAAuc/fG1IQuIn1FVRVceGFQvukmOProKKPpHczdo46B4uJir6ysjDoMEUlD9fXw1a/Ciy8G48Y8/riaY5qZ2RJ3L25tn95QFZG0ds01QWIvKIB771ViT5SSu4ikrQUL4JZbgnb2+fPVzt4ZSu4ikpaqq3e2s8+cCcccE2k4vY6Su4iknR07YNo0+OgjOO00+N73oo6o91FyF5G0c+218MILkJ8ftLNnKVN1mv6TiUhaeeIJuPlmyM4O2tn33jvqiHonJXcRSRs1NTB9elCeORO+8pVo4+nNlNxFJC3Et7OfeipcdVXUEfVuSu4iErlYLMY++/ySv/4VsrPf47TTfqd29m7qcPgBEZFUisViXHzx89TX3wU00Nh4DlddtZQ99qinpKQk6vB6Lf1tFJFIXXnln6mvv6N5C/gLdXV1lJWVRRlWr6fkLiKR+d//hQ8+uBXIBq4D7vxsX01NTVRhZQQldxGJxJ/+BP/8zwD9gZtpnuy6WUFBQQRRZQ4ldxHpca+8Erx5um0bHHvsKgYN+mGL/bm5uZSXl0cUXWZQcheRHrVyJUyeDJs3w7nnwqJF+zN7dgWFhYWYGYWFhVRUVOhhajdpPHcR6TFVVTBhAqxdCyefDI89Bv37Rx1V76Xx3EUkcuvWwUknBYn9n/4JHnpIiT2VOkzuZjbHzDaY2fK4uuFmttDM3grXw8J6M7PbzWyVmS0zs8NTGbyI9A4bN8KkSfD223DEEfDkk5CbG3VUmS2RO/d7gSm71M0AFrn7AcCicBvgZIJJsQ8ASoG7khOmiPRWW7YETTDLl8PBB8PTT8Oee0YdVebrMLm7+3PAxl2qpwJzw/Jc4My4+nkeeAEYamajkhWsiPQun34KU6fCSy9BUREsXAj77BN1VH1DV9vcR7j7urD8PjAiLI8GVscdtyasE5E+ZscO+PrXYfFiGDkSnn0WRisb9JhuP1D1oLtNp7vcmFmpmVWaWWVtbW13wxCRNPKb39zPsGGPsmABZGV9xBVXPMl++0UdVd/S1eS+vrm5JVxvCOvXAvlxx40J63bj7hXuXuzuxXl5eV0MQ0TSzd13P8BFF+3JJ5+cBWyhqWkyN9zwdWKxWNSh9SldTe4LgHBIfaYDj8fVXxD2mjka2BTXfCMiGW7NGvjXfz2UxsbTCB7VnQK8rIHAIpBIV8jfAn8FvmBma8zsEuBGYKKZvQWcFG4DPAW8A6wCZgPfTknUIpJ2liyBo46CHTu+CLwFHA08/9l+DQTWszocz93dz2tj14mtHOvAZd0NSkR6l8ceg5ISqKuDAQNeZPv2U9i1k50GAutZekNVRLrMPZjM+mtfCxL79Onwy1++Q27upy2O00BgPU/JXUQ6FIvFKCoqIisri6KiImKxGDt2QGkpXH11kOR//GO45x648MLzqKjQQGBR08BhItKuWCxGaWkpdXV1n9UNGrQvY8cuYcWKkQwcCPPmwTnnRBhkH9XewGGaQ1VE2lVWVtYiscPn2bbtf1ixYiQjRsCCBTB+fGThSRvULCMi7WrZy2UC8CJwELCMF19UYk9XSu4i0q6dvVzOB54F9gGeIj//GxQWRheXtE/JXUTadd11N9Kv313Ab4ABwO0MGjSNmTOviTgyaY/a3EWkTc8/DzNnTqOhAaAeuIrCwicoL79LvV/SnJK7iOxm2za47jq45Zagm+Nhh8Hcuf0ZN+7nwM+jDk8SoOQuIi289FLwMtIbb0B2NsyYAf/5n5oSr7dRchcRAOrr4Uc/ghtvhMbGYNakuXPhyCOjjky6QsldRHj1VbjgAli2DMzg+9+HG26AgQOjjky6SsldpA9raAju1H/0o2DmpP32g3vvhQkToo5MukvJXaSPWrEiaFtvHvnj8suDRD94cLRxSXIouYv0MVu2wM9+FiTy7duhoADmzIETdxvEW3ozJXeRPqK+HmbPDppgNoQTY15ySdDdcc89o41Nkq9bb6iaWZWZvWZmS82sMqwbbmYLzeytcD0sOaGKSFc0NcEDD8AhhwRNLxs2QP/+rwDH8uyzRTzxhOY2zUTJGH7geHcfFzfs5AxgkbsfACwKt0UkAr//fTD13bRp8PbbMGrUJvr3n0Z9/RHAc1RXV1NaWqrJqzNQKsaWmQrMDctzgTNT8B0i0o6lS2HKlKAdvbISRo2CigrIyTmc+voHWhyryaszU3eTuwPPmNkSMysN60a4+7qw/D4wopvfISIJqqqC88+HL38Z/u//grb08nJYtQouvRRWr3631fM0eXXm6e4D1QnuvtbMPgcsNLM34ne6u5tZq1M9hX8MSkET54p0V21tMM3dL34RPDjt3x8uuwyuvRb22WfncQUFBVRXV+92vv4fzDzdunN397XhegPwKDAeWG9mowDC9YY2zq1w92J3L87Ly+tOGCJ91tKlcPHFkJ8Pt94avIh0/vnw5ptBL5j4xA5QXl5Obm5uizpNXp2ZupzczWywme3RXAYmAcuBBcD08LDpwOPdDVJEdmpogIcfhmOPDZpf7rkHtm9vAhYwcuQpTJkSo6io9XNLSko0eXUf0eUJss3s8wR36xA079zv7uVmtjfwIFAAVAPnuvvG9j5LE2SLdGzjRvj1r+HOO6G5iXzgwB00NFTQ0DALeBsI7sSVsPuG9ibI7nJyTyYld5G2vfYa/PzncN99wTjrAAccAN/5Dvz0p19k9eoVu51TWFhIVVVVzwYqPa695K43VEXSUGMjPPkk3H570Fe92ZQp8N3vwuTJkJUFV1yxstXz1ftFlNxF0oR70Cf9gQeCZc2aoH7wYLjwwuDt0oMOanmOer9IW5TcRSLkDsuXw/z5wfLOOzv3ff7zQUK/+GLYa6/Wzy8vL6e0tJS6urrP6tT7RUDJXSQSf/97cHc+f34w9G6zkSPh3HOD4QKOOipoemlP80PTsrIyampqKCgooLy8XA9TJSXDD4hIK6qr4Sc/gSOOgC98IZiXdMUKGD4cSkuDtvU1a2D8+BjnnVdEv35ZFBUVdTjuS0lJCVVVVTQ1NVFVVaXELoDu3EVSpqEBXnwRnnkGnn46mHi62Z57wplnBnfoJ50EOTlBfSwWa9HM0jywF6CkLZ2irpAiSfTOO0Eyf+YZWLQINm/euW/QIDjjjCChT5nS+vykRUVFrT4gVddGaY26QoqkyKZNsHjxzoT+9tst9x94IEyaFCzHHw9DhrT/eW11YVTXRuksJXeRTti0KWhe+ctfYOFCeOGFoE96s6FDg2aWSZNg4kTaHAagLeraKMmi5C7ShsZGeP31oN38hReCZeXKoPtis+xsmDBh5915cXFQ11Xq2ijJouQuElq/vmUif/ll2Lq15TH9+8PhhwfdFI8/PliSOf+oujZKsuiBqvQ5O3bAW28FY7YsXx6sX301mOhiV0VFcPTRO5dx4+Chh2KdSr6xWOeOF0mUHqhKn+QejJ7YnMCb12+8EUxosavBg2H8+J2J/KijYMQu84h1tquiujZKVHTnLr3eRx8FvVRWrQqWt98O3gBdvrxlV8R4Y8fCoYfCl760c33QQdCvg9udznZVVNdGSaX27txx98iXI444wqVvuO+++7ywsNDNzAsLC/2+++7r8PiCgkKHkT5ixD97aemf/T/+w/2889yPPNJ9+HD34B699WXPPbf5CSe4f/e77rNnu7/wgvvmzV2PKZw2crfFzJJyvEhnAJXeRl6NPLF7Gif3riSidDo+3WK67777PDc3t0WSGzRosN955+98yRL3xx5zv+MO9xkz3EtK3A866H03W+Wwrd0EPniw+2GHuR95ZLX363eLw6UOxzvkeW5ubqdjau+cwsLCVpN1YWFhUo4X6Qwl91B3E1F7/9On2/FRx1RX5/7uu8Gd8oIFwV3z0KE3OdzqcL/DHxxWOXzabuLeuXzg8IJDzPfa61a/91735593X7fOvakpiKcribSz5/TE7yaSqEiSOzAFeBNYBcxo79iuJvdUJutU36H1xB1gsr4jP/9AX7PGfdky9z/8wf2RR5qT9Y8dZjr8yuERhz87vOVmWxJM2M3Lh37YYe6nnOL+rW+533CD+z33uMOJDgc6DG4RTzKbQLpyTk/8i0skEe0l95Q8UDWzbODvwERgDfAycJ677z4fGF17oLprLwRof+7Izj7YysrKorX/NmZGU1NT2h8f7MsCBgKDgT2BvcL1UObNe4zNm4M3LpvXv/xlLO64YcDwcBnU6ue3Jycn6Gnyuc8F6xEj4JFHfsnmzX8HNgDrgNXAWgoL85LyMLIrDy/1wFN6syi6Qo4HVrn7O2EA84GpQKvJvSvKyspaJHaAuro6ysrKWk3unR2zo7OvgXfmeHfIz9+fmpr1wACCBDwIGMSIEZ9n0aJgrsz4ZejQ6/noo23hcbkECXsIAwfmMWkSfPJJsGzdunMNDbQ1qvMFF7RW21bXvO2MGjWA4cNpsTz8cAWbN1cBHwG1wHpgA/n5A6iuXoZZy0856aQ9KC39VcJvX3b2bc2uvN2pN0IlU6UquY8muC1rtgY4KplfECTlQcAQgsvoB2RTXZ3DypXBq+MNDTvXn/vcWaxfXxsel/PZeu+99+W3vw1ebGleGhpgwoSHee+9R9mxoyk8vj/9+g3mC1+Ywre/HfSTbl527IDhw59n9eo3aGrKBvoDAzEbxKefjiE/H7ZvD5ZPP23uY/33Vq/r/feDsUl295+tHr9tWzDGSeuygG3AJ8AmYDNZWVv5h38YyyGHjGHPPYMZfprXr732Z+bMuZX6+lpgI7CRQYM+paLiNs4/f/fEf+KJgyktvW23xDhzZsVuiR06//Zlqo/v6jkivUGqmmXOBqa4+/8Lt78JHOXul8cdUwqUAhQUFBzR2l1vey+CrqAAAAQ+SURBVIJ/TpcAvfMOKycHsrN3UF+/maambfTrV8+++w5j1KhhDBpEiyU3N1i/887r/OlPz7Bp0/sMH57D2WefwqRJX2Hw4GC0wdbW8+en9m1KvX0pEp32mmVSldyPAa5398nh9jUA7j6zteO72uZ+0UVL2bHjaqARaMCskby8vRk2bA/69QsGcOrXj8/KGzduoKrqbbZv38KgQf04+OADGDs2n5yc4JicHFot9+8fLDk5O8sdbQ8cCAMGBMuu5f79O54+TUSkI1G0ub8MHGBmY4G1wDTgG8n8gp3/nB7fibvGz4WLiEhmS9nwA2Z2CnArkA3Mcfc22080/ICISOdFMnCYuz8FPJWqzxcRkbap5VdEJAMpuYuIZCAldxGRDKTkLiKSgZTcRUQykJK7iEgGSotp9sysFmgef2Af4IMIw4mCrrlv0DX3DT15zYXuntfajrRI7vHMrLKtTvmZStfcN+ia+4Z0uWY1y4iIZCAldxGRDJSOyb0i6gAioGvuG3TNfUNaXHPatbmLiEj3peOdu4iIdFNaJXczm2Jmb5rZKjObEXU8PcHMqszsNTNbamYZOe6xmc0xsw1mtjyubriZLTSzt8L1sChjTLY2rvl6M1sb/tZLw2GxM4KZ5ZvZYjNbYWavm9kVYX3G/s7tXHNa/M5p0yxjZtkEE4tOJJhz9WXgPHdP2qTa6cjMqoBid8/YvsBm9lVgKzDP3Q8N634CbHT3G8M/5MPc/QdRxplMbVzz9cBWd785ythSwcxGAaPc/RUz2wNYApwJXEiG/s7tXPO5pMHvnE537uOBVe7+jrvXA/OBqRHHJEng7s8RzLgdbyowNyzPJfifImO0cc0Zy93XufsrYXkLsBIYTQb/zu1cc1pIp+Q+Glgdt72GNPoPlUIOPGNmS8JJw/uKEe6+Liy/D4yIMpgedLmZLQubbTKmiSKemRUBXwZepI/8zrtcM6TB75xOyb2vmuDuhwMnA5eF/5zvUzxoG0yP9sHUugvYDxgHrAN+Fm04yWdmQ4CHgSvdfXP8vkz9nVu55rT4ndMpua8F8uO2x4R1Gc3d14brDcCjBM1TfcH6sM2yue1yQ8TxpJy7r3f3RndvAmaTYb+1meUQJLmYuz8SVmf079zaNafL75xOyf1l4AAzG2tm/YFpwIKIY0opMxscPojBzAYDk4Dl7Z+VMRYA08PydODxCGPpEc1JLnQWGfRbm5kBdwMr3f2WuF0Z+zu3dc3p8junTW8ZgLDL0K1ANjDH3csjDimlzOzzBHfrEExWfn8mXrOZ/RY4jmC0vPXAD4HHgAeBAoIRQc9194x5ANnGNR9H8E91B6qAb8W1R/dqZjYB+BPwGtAUVl9L0Aadkb9zO9d8HmnwO6dVchcRkeRIp2YZERFJEiV3EZEMpOQuIpKBlNxFRDKQkruISAZSchcRyUBK7iIiGUjJXUQkA/1/VHeTsHgGXgIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot outputs\n", "plt.scatter(days, mexico_filter['Confirmed'], color='black')\n", "plt.plot(days,exponential(days,*potp), color='blue', linewidth=2)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 4 }