| @ -0,0 +1,127 @@ | |||||
| """ | |||||
| FEniCS tutorial demo program: Incompressible Navier-Stokes equations | |||||
| for channel flow (Poisseuille) on the unit square using the | |||||
| Incremental Pressure Correction Scheme (IPCS). | |||||
| u' + u . nabla(u)) - div(sigma(u, p)) = f | |||||
| div(u) = 0 | |||||
| """ | |||||
| from __future__ import print_function | |||||
| from fenics import * | |||||
| import numpy as np | |||||
| T = 10.0 # final time | |||||
| num_steps = 500 # number of time steps | |||||
| dt = T / num_steps # time step size | |||||
| mu = 1 # kinematic viscosity | |||||
| rho = 1 # density | |||||
| # Create mesh and define function spaces | |||||
| mesh = UnitSquareMesh(16, 16) | |||||
| V = VectorFunctionSpace(mesh, 'P', 2) | |||||
| Q = FunctionSpace(mesh, 'P', 1) | |||||
| # Define boundaries | |||||
| inflow = 'near(x[0], 0)' | |||||
| outflow = 'near(x[0], 1)' | |||||
| walls = 'near(x[1], 0) || near(x[1], 1)' | |||||
| # Define boundary conditions | |||||
| bcu_noslip = DirichletBC(V, Constant((0, 0)), walls) | |||||
| bcp_inflow = DirichletBC(Q, Constant(8), inflow) | |||||
| bcp_outflow = DirichletBC(Q, Constant(0), outflow) | |||||
| bcu = [bcu_noslip] | |||||
| bcp = [bcp_inflow, bcp_outflow] | |||||
| # Define trial and test functions | |||||
| u = TrialFunction(V) | |||||
| v = TestFunction(V) | |||||
| p = TrialFunction(Q) | |||||
| q = TestFunction(Q) | |||||
| # Define functions for solutions at previous and current time steps | |||||
| u_n = Function(V) | |||||
| u_ = Function(V) | |||||
| p_n = Function(Q) | |||||
| p_ = Function(Q) | |||||
| # Define expressions used in variational forms | |||||
| U = 0.5*(u_n + u) | |||||
| n = FacetNormal(mesh) | |||||
| f = Constant((0, 0)) | |||||
| k = Constant(dt) | |||||
| mu = Constant(mu) | |||||
| rho = Constant(rho) | |||||
| # Define strain-rate tensor | |||||
| def epsilon(u): | |||||
| return sym(nabla_grad(u)) | |||||
| # Define stress tensor | |||||
| def sigma(u, p): | |||||
| return 2*mu*epsilon(u) - p*Identity(len(u)) | |||||
| # Define variational problem for step 1 | |||||
| F1 = rho*dot((u - u_n) / k, v)*dx + \ | |||||
| rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \ | |||||
| + inner(sigma(U, p_n), epsilon(v))*dx \ | |||||
| + dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \ | |||||
| - dot(f, v)*dx | |||||
| a1 = lhs(F1) | |||||
| L1 = rhs(F1) | |||||
| # Define variational problem for step 2 | |||||
| a2 = dot(nabla_grad(p), nabla_grad(q))*dx | |||||
| L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx | |||||
| # Define variational problem for step 3 | |||||
| a3 = dot(u, v)*dx | |||||
| L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx | |||||
| # Assemble matrices | |||||
| A1 = assemble(a1) | |||||
| A2 = assemble(a2) | |||||
| A3 = assemble(a3) | |||||
| # Apply boundary conditions to matrices | |||||
| [bc.apply(A1) for bc in bcu] | |||||
| [bc.apply(A2) for bc in bcp] | |||||
| # Time-stepping | |||||
| t = 0 | |||||
| for n in range(num_steps): | |||||
| # Update current time | |||||
| t += dt | |||||
| # Step 1: Tentative velocity step | |||||
| b1 = assemble(L1) | |||||
| [bc.apply(b1) for bc in bcu] | |||||
| solve(A1, u_.vector(), b1) | |||||
| # Step 2: Pressure correction step | |||||
| b2 = assemble(L2) | |||||
| [bc.apply(b2) for bc in bcp] | |||||
| solve(A2, p_.vector(), b2) | |||||
| # Step 3: Velocity correction step | |||||
| b3 = assemble(L3) | |||||
| solve(A3, u_.vector(), b3) | |||||
| # Plot solution | |||||
| plot(u_) | |||||
| # Compute error | |||||
| u_e = Expression(('4*x[1]*(1.0 - x[1])', '0'), degree=2) | |||||
| u_e = interpolate(u_e, V) | |||||
| error = np.abs(u_e.vector().array() - u_.vector().array()).max() | |||||
| print('t = %.2f: error = %.3g' % (t, error)) | |||||
| print('max u:', u_.vector().array().max()) | |||||
| # Update previous solution | |||||
| u_n.assign(u_) | |||||
| p_n.assign(p_) | |||||
| # Hold plot | |||||
| interactive() | |||||