| @ -0,0 +1,127 @@ | |||
| """ | |||
| FEniCS tutorial demo program: Incompressible Navier-Stokes equations | |||
| for channel flow (Poisseuille) on the unit square using the | |||
| Incremental Pressure Correction Scheme (IPCS). | |||
| u' + u . nabla(u)) - div(sigma(u, p)) = f | |||
| div(u) = 0 | |||
| """ | |||
| from __future__ import print_function | |||
| from fenics import * | |||
| import numpy as np | |||
| T = 10.0 # final time | |||
| num_steps = 500 # number of time steps | |||
| dt = T / num_steps # time step size | |||
| mu = 1 # kinematic viscosity | |||
| rho = 1 # density | |||
| # Create mesh and define function spaces | |||
| mesh = UnitSquareMesh(16, 16) | |||
| V = VectorFunctionSpace(mesh, 'P', 2) | |||
| Q = FunctionSpace(mesh, 'P', 1) | |||
| # Define boundaries | |||
| inflow = 'near(x[0], 0)' | |||
| outflow = 'near(x[0], 1)' | |||
| walls = 'near(x[1], 0) || near(x[1], 1)' | |||
| # Define boundary conditions | |||
| bcu_noslip = DirichletBC(V, Constant((0, 0)), walls) | |||
| bcp_inflow = DirichletBC(Q, Constant(8), inflow) | |||
| bcp_outflow = DirichletBC(Q, Constant(0), outflow) | |||
| bcu = [bcu_noslip] | |||
| bcp = [bcp_inflow, bcp_outflow] | |||
| # Define trial and test functions | |||
| u = TrialFunction(V) | |||
| v = TestFunction(V) | |||
| p = TrialFunction(Q) | |||
| q = TestFunction(Q) | |||
| # Define functions for solutions at previous and current time steps | |||
| u_n = Function(V) | |||
| u_ = Function(V) | |||
| p_n = Function(Q) | |||
| p_ = Function(Q) | |||
| # Define expressions used in variational forms | |||
| U = 0.5*(u_n + u) | |||
| n = FacetNormal(mesh) | |||
| f = Constant((0, 0)) | |||
| k = Constant(dt) | |||
| mu = Constant(mu) | |||
| rho = Constant(rho) | |||
| # Define strain-rate tensor | |||
| def epsilon(u): | |||
| return sym(nabla_grad(u)) | |||
| # Define stress tensor | |||
| def sigma(u, p): | |||
| return 2*mu*epsilon(u) - p*Identity(len(u)) | |||
| # Define variational problem for step 1 | |||
| F1 = rho*dot((u - u_n) / k, v)*dx + \ | |||
| rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \ | |||
| + inner(sigma(U, p_n), epsilon(v))*dx \ | |||
| + dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \ | |||
| - dot(f, v)*dx | |||
| a1 = lhs(F1) | |||
| L1 = rhs(F1) | |||
| # Define variational problem for step 2 | |||
| a2 = dot(nabla_grad(p), nabla_grad(q))*dx | |||
| L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx | |||
| # Define variational problem for step 3 | |||
| a3 = dot(u, v)*dx | |||
| L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx | |||
| # Assemble matrices | |||
| A1 = assemble(a1) | |||
| A2 = assemble(a2) | |||
| A3 = assemble(a3) | |||
| # Apply boundary conditions to matrices | |||
| [bc.apply(A1) for bc in bcu] | |||
| [bc.apply(A2) for bc in bcp] | |||
| # Time-stepping | |||
| t = 0 | |||
| for n in range(num_steps): | |||
| # Update current time | |||
| t += dt | |||
| # Step 1: Tentative velocity step | |||
| b1 = assemble(L1) | |||
| [bc.apply(b1) for bc in bcu] | |||
| solve(A1, u_.vector(), b1) | |||
| # Step 2: Pressure correction step | |||
| b2 = assemble(L2) | |||
| [bc.apply(b2) for bc in bcp] | |||
| solve(A2, p_.vector(), b2) | |||
| # Step 3: Velocity correction step | |||
| b3 = assemble(L3) | |||
| solve(A3, u_.vector(), b3) | |||
| # Plot solution | |||
| plot(u_) | |||
| # Compute error | |||
| u_e = Expression(('4*x[1]*(1.0 - x[1])', '0'), degree=2) | |||
| u_e = interpolate(u_e, V) | |||
| error = np.abs(u_e.vector().array() - u_.vector().array()).max() | |||
| print('t = %.2f: error = %.3g' % (t, error)) | |||
| print('max u:', u_.vector().array().max()) | |||
| # Update previous solution | |||
| u_n.assign(u_) | |||
| p_n.assign(p_) | |||
| # Hold plot | |||
| interactive() | |||