|
\documentclass{article}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage[english]{babel}
|
|
\usepackage{amssymb,amsmath}
|
|
|
|
\begin{document}
|
|
\section{Simple equations on text}
|
|
\label{sec:eq-text}
|
|
|
|
Here you can see simple equations along with text $x$, $y$ and \(z\) are in math mode. This mode is known as \textbf{inline} mode and it is recommended to write short equations like: $-10 \leq x \leq 10$. Thus, if complex and long equations are required, it is recommended to use the equation environment.\par
|
|
|
|
\section{Equation environment}
|
|
\label{sec:environment}
|
|
|
|
Here we can find a way to write long equations like \eqref{eq:fraction}:
|
|
\begin{equation}
|
|
\label{eq:fraction}
|
|
f(t)=\sqrt{\frac{t-a}{t+a}}
|
|
\end{equation}
|
|
\noindent here $t$ is time in seconds.
|
|
|
|
More complex equations can be written using symbols and commands from math-mode. An example is the Fourier coefficients equations \eqref{eq:a0},\eqref{eq:an} and \eqref{eq:bn}:
|
|
\begin{eqnarray}
|
|
a_0=\frac{1}{T}\int_0^T f(t)dt \label{eq:a0}\\
|
|
a_n=\frac{2}{T}\int_0^T f(t)\cdot \cos{\left(\frac{2\pi nt}{T}\right)}dt \label{eq:an}\\
|
|
b_n=\frac{2}{T}\int_0^T f(t)\cdot \sin{\left(\frac{2\pi nt}{T}\right)}dt \label{eq:bn}
|
|
\end{eqnarray}
|
|
|
|
Previous equations are used to define the Fourier series as:
|
|
\begin{equation}
|
|
\label{eq:fourier}
|
|
g(t)=a_0+\sum_{m=1}^{\infty}a_m \cos{\left(\frac{2\pi mt}{T}\right)}++\sum_{m=1}^{\infty}b_n \sin{\left(\frac{2\pi nt}{T}\right)}
|
|
\end{equation}
|
|
|
|
\begin{equation}
|
|
A=
|
|
\begin{pmatrix}
|
|
a & b& c\\
|
|
d & e &f
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
\end{document}
|
|
|
|
|
|
|
|
|