|
|
- import numpy as np
- import matplotlib.pyplot as plt
-
- ###############################
- #Datos originales
- ###############################
- X = 2 * np.random.rand(100, 1)
- y = 4 + 3 * X + np.random.randn(100,1)
-
- plt.plot(X,y,".")
- ###############################
-
- X_b = np.c_[np.ones((100,1)), X] #Se agrega x0=1 para cada instancia
- theta_best=np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
-
- X_new = np.array([[0], [2]])
- X_new_b = np.c_[np.ones((2, 1)), X_new] #Se agrega x0=1 para cada instancia
- y_predict = X_new_b.dot(theta_best)
-
- plt.plot(X_new, y_predict, "r-")
- plt.plot(X, y, "b.")
- plt.axis([0, 2, 0, 15])
- plt.show()
|