|
|
- import numpy as np
- import matplotlib.pyplot as plt
- from sklearn.preprocessing import PolynomialFeatures
- from sklearn.linear_model import LinearRegression
- ###############################
- #Datos originales
- ###############################
- m = 100
- X = 6 * np.random.rand(m, 1) - 3
- y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
-
- plt.plot(X,y,".")
-
- poly_features = PolynomialFeatures(degree=2, include_bias=False)
- X_poly = poly_features.fit_transform(X)
- lin_reg = LinearRegression()
- lin_reg.fit(X_poly, y)
- yout=lin_reg.predict(X_poly)
- plt.plot(X,yout,"*")
- plt.show()
|