| @ -0,0 +1,30 @@ | |||||
| import numpy as np | |||||
| import matplotlib.pyplot as plt | |||||
| ############################### | |||||
| #Datos originales | |||||
| ############################### | |||||
| X = 2 * np.random.rand(100, 1) | |||||
| y = 4 + 3 * X + np.random.randn(100,1) | |||||
| plt.plot(X,y,".") | |||||
| ############################### | |||||
| X_b = np.c_[np.ones((100,1)), X] #Se agrega x0=1 para cada instancia | |||||
| m=100 | |||||
| n_epochs = 50 | |||||
| t0, t1 = 5, 50 # learning schedule hyperparameters | |||||
| def learning_schedule(t): | |||||
| return t0 / (t + t1) | |||||
| theta = np.random.randn(2,1) # random initialization | |||||
| for epoch in range(n_epochs): | |||||
| for i in range(m): | |||||
| random_index = np.random.randint(m) | |||||
| xi = X_b[random_index:random_index+1] | |||||
| yi = y[random_index:random_index+1] | |||||
| gradients = 2 * xi.T.dot(xi.dot(theta) - yi) | |||||
| eta = learning_schedule(epoch * m + i) | |||||
| theta = theta - eta * gradients | |||||
| print(theta) | |||||