|
@ -0,0 +1,72 @@ |
|
|
|
|
|
from sklearn.base import clone |
|
|
|
|
|
from sklearn.pipeline import Pipeline |
|
|
|
|
|
from sklearn import preprocessing |
|
|
|
|
|
from sklearn.preprocessing import PolynomialFeatures |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
from sklearn.linear_model import SGDRegressor |
|
|
|
|
|
from sklearn.metrics import mean_squared_error |
|
|
|
|
|
from sklearn.preprocessing import StandardScaler |
|
|
|
|
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
|
|
|
|
|
|
np.random.seed(42) |
|
|
|
|
|
m = 100 |
|
|
|
|
|
X = 6 * np.random.rand(m, 1) - 3 |
|
|
|
|
|
y = 2 + X + 0.5 * X**2 + np.random.randn(m, 1) |
|
|
|
|
|
|
|
|
|
|
|
plt.plot(X,y,".", label = "Datos originales") |
|
|
|
|
|
|
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X[:50], y[:50].ravel(), test_size=0.5, random_state=10) |
|
|
|
|
|
|
|
|
|
|
|
poly_scaler = Pipeline([ |
|
|
|
|
|
("poly_features", PolynomialFeatures(degree=90, include_bias=False)), |
|
|
|
|
|
("std_scaler", StandardScaler()), |
|
|
|
|
|
]) |
|
|
|
|
|
|
|
|
|
|
|
X_train_poly_scaled = poly_scaler.fit_transform(X_train) |
|
|
|
|
|
X_val_poly_scaled = poly_scaler.transform(X_val) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sgd_reg = SGDRegressor(max_iter=1, tol=-np.infty, warm_start=True, penalty=None, |
|
|
|
|
|
learning_rate="constant", eta0=0.0005, random_state=42) |
|
|
|
|
|
print(sgd_reg) |
|
|
|
|
|
minimum_val_error = float("inf") |
|
|
|
|
|
best_epoch = None |
|
|
|
|
|
best_model = None |
|
|
|
|
|
for epoch in range(1000): |
|
|
|
|
|
sgd_reg.fit(X_train_poly_scaled, y_train) # continues where it left off |
|
|
|
|
|
y_val_predict = sgd_reg.predict(X_val_poly_scaled) |
|
|
|
|
|
val_error = mean_squared_error(y_val, y_val_predict) |
|
|
|
|
|
if val_error < minimum_val_error: |
|
|
|
|
|
minimum_val_error = val_error |
|
|
|
|
|
best_epoch = epoch |
|
|
|
|
|
best_model = clone(sgd_reg) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(best_epoch) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sgd_reg = SGDRegressor(max_iter=best_epoch, tol=-np.infty, warm_start=True, penalty=None, |
|
|
|
|
|
learning_rate="constant", eta0=0.0005, random_state=42) |
|
|
|
|
|
|
|
|
|
|
|
poly_features = PolynomialFeatures(degree=2, include_bias=False) |
|
|
|
|
|
X_pol = poly_features.fit_transform(X) |
|
|
|
|
|
|
|
|
|
|
|
sgd_reg.fit(X_pol,y.ravel()) |
|
|
|
|
|
yout=sgd_reg.predict(X_pol) |
|
|
|
|
|
|
|
|
|
|
|
plt.plot(X,yout,"*", label = "Predicciones") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# naming the x axis |
|
|
|
|
|
plt.xlabel('Eje X') |
|
|
|
|
|
# naming the y axis |
|
|
|
|
|
plt.ylabel('Eje Y') |
|
|
|
|
|
# giving a title to my graph |
|
|
|
|
|
|
|
|
|
|
|
plt.legend() |
|
|
|
|
|
plt.show() |