|
|
@ -0,0 +1,78 @@ |
|
|
|
from sklearn import datasets |
|
|
|
from sklearn.linear_model import LogisticRegression |
|
|
|
import numpy as np |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
iris = datasets.load_iris() |
|
|
|
list(iris.keys()) |
|
|
|
print(iris.DESCR) |
|
|
|
X = iris["data"][:, 3:] # petal width |
|
|
|
y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_reg = LogisticRegression(solver="liblinear", random_state=42) |
|
|
|
log_reg.fit(X, y) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X_new = np.linspace(0, 3, 1000).reshape(-1, 1) |
|
|
|
y_proba = log_reg.predict_proba(X_new) |
|
|
|
decision_boundary = X_new[y_proba[:, 1] >= 0.5][0] |
|
|
|
|
|
|
|
plt.figure(figsize=(8, 3)) |
|
|
|
plt.plot(X[y==0], y[y==0], "bs") |
|
|
|
plt.plot(X[y==1], y[y==1], "g^") |
|
|
|
plt.plot([decision_boundary, decision_boundary], [-1, 2], "k:", linewidth=2) |
|
|
|
plt.plot(X_new, y_proba[:, 1], "g-", linewidth=2, label="Iris-Virginica") |
|
|
|
plt.plot(X_new, y_proba[:, 0], "b--", linewidth=2, label="Not Iris-Virginica") |
|
|
|
plt.text(decision_boundary+0.02, 0.15, "Decision boundary", fontsize=14, color="k", ha="center") |
|
|
|
plt.arrow(decision_boundary, 0.08, -0.3, 0, head_width=0.05, head_length=0.1, fc='b', ec='b') |
|
|
|
plt.arrow(decision_boundary, 0.92, 0.3, 0, head_width=0.05, head_length=0.1, fc='g', ec='g') |
|
|
|
plt.xlabel("Ancho de petalo (cm)", fontsize=14) |
|
|
|
plt.ylabel("Probabilidad", fontsize=14) |
|
|
|
plt.legend(loc="center left", fontsize=14) |
|
|
|
plt.axis([0, 3, -0.02, 1.02]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X = iris["data"][:, (2, 3)] # petal length, petal width |
|
|
|
y = iris["target"] |
|
|
|
|
|
|
|
softmax_reg = LogisticRegression(multi_class="multinomial",solver="lbfgs", C=10, random_state=42) |
|
|
|
softmax_reg.fit(X, y) |
|
|
|
|
|
|
|
x0, x1 = np.meshgrid( |
|
|
|
np.linspace(0, 8, 500).reshape(-1, 1), |
|
|
|
np.linspace(0, 3.5, 200).reshape(-1, 1), |
|
|
|
) |
|
|
|
X_new = np.c_[x0.ravel(), x1.ravel()] |
|
|
|
|
|
|
|
|
|
|
|
y_proba = softmax_reg.predict_proba(X_new) |
|
|
|
y_predict = softmax_reg.predict(X_new) |
|
|
|
|
|
|
|
zz1 = y_proba[:, 1].reshape(x0.shape) |
|
|
|
zz = y_predict.reshape(x0.shape) |
|
|
|
|
|
|
|
plt.figure(figsize=(10, 4)) |
|
|
|
plt.plot(X[y==2, 0], X[y==2, 1], "g^", label="Iris-Virginica") |
|
|
|
plt.plot(X[y==1, 0], X[y==1, 1], "bs", label="Iris-Versicolor") |
|
|
|
plt.plot(X[y==0, 0], X[y==0, 1], "yo", label="Iris-Setosa") |
|
|
|
|
|
|
|
from matplotlib.colors import ListedColormap |
|
|
|
custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0']) |
|
|
|
|
|
|
|
plt.contourf(x0, x1, zz, cmap=custom_cmap) |
|
|
|
contour = plt.contour(x0, x1, zz1, cmap=plt.cm.brg) |
|
|
|
plt.clabel(contour, inline=1, fontsize=12) |
|
|
|
plt.xlabel("Largo de petalo", fontsize=14) |
|
|
|
plt.ylabel("ancho de petalo", fontsize=14) |
|
|
|
plt.legend(loc="center left", fontsize=14) |
|
|
|
plt.axis([0, 7, 0, 3.5]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.show() |
|
|
|
|