| @ -0,0 +1,29 @@ | |||||
| from sklearn.linear_model import ElasticNet | |||||
| from sklearn.preprocessing import PolynomialFeatures | |||||
| import numpy as np | |||||
| import matplotlib.pyplot as plt | |||||
| ############################### | |||||
| #Datos originales | |||||
| ############################### | |||||
| m = 100 | |||||
| X = 6 * np.random.rand(m, 1) - 3 | |||||
| y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1) | |||||
| plt.plot(X,y,".", label = "Datos originales") | |||||
| ############################### | |||||
| poly_features = PolynomialFeatures(degree=2, include_bias=False) | |||||
| X_pol = poly_features.fit_transform(X) | |||||
| elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5) | |||||
| elastic_net.fit(X_pol, y) | |||||
| yout=elastic_net.predict(X_pol) | |||||
| plt.plot(X,yout,"*", label = "Predicciones") | |||||
| # naming the x axis | |||||
| plt.xlabel('Eje X') | |||||
| # naming the y axis | |||||
| plt.ylabel('Eje Y') | |||||
| # giving a title to my graph | |||||
| plt.legend() | |||||
| plt.show() | |||||