from sklearn.linear_model import ElasticNet from sklearn.preprocessing import PolynomialFeatures import numpy as np import matplotlib.pyplot as plt ############################### #Datos originales ############################### m = 100 X = 6 * np.random.rand(m, 1) - 3 y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1) plt.plot(X,y,".", label = "Datos originales") ############################### poly_features = PolynomialFeatures(degree=2, include_bias=False) X_pol = poly_features.fit_transform(X) elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5) elastic_net.fit(X_pol, y) yout=elastic_net.predict(X_pol) plt.plot(X,yout,"*", label = "Predicciones") # naming the x axis plt.xlabel('Eje X') # naming the y axis plt.ylabel('Eje Y') # giving a title to my graph plt.legend() plt.show()