import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression ############################### #Datos originales ############################### m = 100 X = 6 * np.random.rand(m, 1) - 3 y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1) plt.plot(X,y,".") poly_features = PolynomialFeatures(degree=2, include_bias=False) X_poly = poly_features.fit_transform(X) lin_reg = LinearRegression() lin_reg.fit(X_poly, y) yout=lin_reg.predict(X_poly) plt.plot(X,yout,"*") plt.show()