import numpy as np import matplotlib.pyplot as plt ############################### #Datos originales ############################### X = 2 * np.random.rand(100, 1) y = 4 + 3 * X + np.random.randn(100,1) plt.plot(X,y,".") ############################### X_b = np.c_[np.ones((100,1)), X] #Se agrega x0=1 para cada instancia m=100 n_epochs = 50 t0, t1 = 5, 50 # learning schedule hyperparameters def learning_schedule(t): return t0 / (t + t1) theta = np.random.randn(2,1) # random initialization for epoch in range(n_epochs): for i in range(m): random_index = np.random.randint(m) xi = X_b[random_index:random_index+1] yi = y[random_index:random_index+1] gradients = 2 * xi.T.dot(xi.dot(theta) - yi) eta = learning_schedule(epoch * m + i) theta = theta - eta * gradients print(theta)