import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
###############################
|
|
#Datos originales
|
|
###############################
|
|
X = 2 * np.random.rand(100, 1)
|
|
y = 4 + 3 * X + np.random.randn(100,1)
|
|
|
|
plt.plot(X,y,".")
|
|
###############################
|
|
X_b = np.c_[np.ones((100,1)), X] #Se agrega x0=1 para cada instancia
|
|
eta = 0.1 #Pasos
|
|
n_itera = 1000
|
|
m=100
|
|
|
|
theta = np.random.randn(2,1) #Inicialización aleatoria
|
|
for iteracion in range (n_itera):
|
|
gradiente = 2/m * X_b.T.dot(X_b.dot(theta)-y)
|
|
theta = theta - eta * gradiente
|
|
|
|
print(theta)
|