from sklearn.base import clone
|
|
from sklearn.pipeline import Pipeline
|
|
from sklearn import preprocessing
|
|
from sklearn.preprocessing import PolynomialFeatures
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.linear_model import SGDRegressor
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.preprocessing import StandardScaler
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
np.random.seed(42)
|
|
m = 100
|
|
X = 6 * np.random.rand(m, 1) - 3
|
|
y = 2 + X + 0.5 * X**2 + np.random.randn(m, 1)
|
|
|
|
plt.plot(X,y,".", label = "Datos originales")
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X[:50], y[:50].ravel(), test_size=0.5, random_state=10)
|
|
|
|
poly_scaler = Pipeline([
|
|
("poly_features", PolynomialFeatures(degree=90, include_bias=False)),
|
|
("std_scaler", StandardScaler()),
|
|
])
|
|
|
|
X_train_poly_scaled = poly_scaler.fit_transform(X_train)
|
|
X_val_poly_scaled = poly_scaler.transform(X_val)
|
|
|
|
|
|
sgd_reg = SGDRegressor(max_iter=1, tol=-np.infty, warm_start=True, penalty=None,
|
|
learning_rate="constant", eta0=0.0005, random_state=42)
|
|
print(sgd_reg)
|
|
minimum_val_error = float("inf")
|
|
best_epoch = None
|
|
best_model = None
|
|
for epoch in range(1000):
|
|
sgd_reg.fit(X_train_poly_scaled, y_train) # continues where it left off
|
|
y_val_predict = sgd_reg.predict(X_val_poly_scaled)
|
|
val_error = mean_squared_error(y_val, y_val_predict)
|
|
if val_error < minimum_val_error:
|
|
minimum_val_error = val_error
|
|
best_epoch = epoch
|
|
best_model = clone(sgd_reg)
|
|
|
|
|
|
print(best_epoch)
|
|
|
|
|
|
|
|
|
|
|
|
sgd_reg = SGDRegressor(max_iter=best_epoch, tol=-np.infty, warm_start=True, penalty=None,
|
|
learning_rate="constant", eta0=0.0005, random_state=42)
|
|
|
|
poly_features = PolynomialFeatures(degree=2, include_bias=False)
|
|
X_pol = poly_features.fit_transform(X)
|
|
|
|
sgd_reg.fit(X_pol,y.ravel())
|
|
yout=sgd_reg.predict(X_pol)
|
|
|
|
plt.plot(X,yout,"*", label = "Predicciones")
|
|
|
|
|
|
|
|
# naming the x axis
|
|
plt.xlabel('Eje X')
|
|
# naming the y axis
|
|
plt.ylabel('Eje Y')
|
|
# giving a title to my graph
|
|
|
|
plt.legend()
|
|
plt.show()
|