|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.preprocessing import PolynomialFeatures
|
|
from sklearn.linear_model import LinearRegression
|
|
###############################
|
|
#Datos originales
|
|
###############################
|
|
m = 100
|
|
X = 6 * np.random.rand(m, 1) - 3
|
|
y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
|
|
|
|
plt.plot(X,y,".")
|
|
|
|
poly_features = PolynomialFeatures(degree=2, include_bias=False)
|
|
X_poly = poly_features.fit_transform(X)
|
|
lin_reg = LinearRegression()
|
|
lin_reg.fit(X_poly, y)
|
|
yout=lin_reg.predict(X_poly)
|
|
plt.plot(X,yout,"*")
|
|
plt.show()
|