|
from sklearn.linear_model import Ridge
|
|
from sklearn.preprocessing import PolynomialFeatures
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
###############################
|
|
#Datos originales
|
|
###############################
|
|
m = 100
|
|
X = 6 * np.random.rand(m, 1) - 3
|
|
y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
|
|
|
|
plt.plot(X,y,".")
|
|
###############################
|
|
poly_features = PolynomialFeatures(degree=2, include_bias=False)
|
|
X_pol = poly_features.fit_transform(X)
|
|
ridge_reg = Ridge(alpha=1, solver="cholesky")
|
|
ridge_reg.fit(X_pol, y)
|
|
yout=ridge_reg.predict(X_pol)
|
|
print(ridge_reg.predict(1.5,2))
|
|
plt.plot(X,yout,"*")
|
|
plt.show()
|